# volume 13, issue 2

### 1. Finitely generated subgroups of free groups as formal languages and their cogrowth

For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.

### 2. A fibering theorem for 3-manifolds

We generalize a result of Moon on the fibering of certain 3-manifolds over the circle. Our main theorem is the following: Let $M$ be a closed 3-manifold. Suppose that $G=\pi_1(M)$ contains a finitely generated group $U$ of infinite index in $G$ which contains a non-trivial subnormal subgroup $N\neq \mathbb{Z}$ of $G$, and suppose that $N$ has a composition series of length $n$ in which at least $n-1$ terms are finitely generated. Suppose that $N$ intersects nontrivially the fundamental groups of the splitting tori given by the Geometrization Theorem and that the intersections of $N$ with the fundamental groups of the geometric pieces are non-trivial and not isomorphic to $\mathbb{Z}$. Then, $M$ has a finite cover which is a bundle over $\mathbb{S}$ with fiber a compact surface $F$ such that $\pi_1(F)$ and $U$ are commensurable.