The Heisenberg group, here denoted $H$, is the group of all $3\times 3$ upper unitriangular matrices with entries in the ring $\mathbb{Z}$ of integers. A.G. Myasnikov posed the question of whether or not the universal theory of $H$, in the language of $H$, is axiomatized, when the models are restricted to $H$-groups, by the quasi-identities true in $H$ together with the assertion that the centralizers of noncentral elements be abelian. Based on earlier published partial results we here give a complete proof of a slightly stronger result.
In this article, we study the asymptotic behaviour of conjugacy separability for wreath products of abelian groups. We fully characterise the asymptotic class in the case of lamplighter groups and give exponential upper and lower bounds for generalised lamplighter groups. In the case where the base group is infinite, we give superexponential lower and upper bounds. We apply our results to obtain lower bounds for conjugacy depth functions of various wreath products of groups where the acting group is not abelian.
This is a survey of our recent results on the amenability problem for Thompson's group $F$. They mostly concern esimating the density of finite subgraphs in Cayley graphs of $F$ for various systems of generators, and also equations in the group ring of $F$. We also discuss possible approaches to solve the problem in both directions.