A $\vee$-complement of a subgroup $H \leqslant \mathbb{F}_n$ is a subgroup $K \leqslant \mathbb{F}_n$ such that $H \vee K = \mathbb{F}_n$. If we also ask $K$ to have trivial intersection with $H$, then we say that $K$ is a $\oplus$-complement of $H$. The minimum possible rank of a $\vee$-complement (resp. $\oplus$-complement) of $H$ is called the $\vee$-corank (resp. $\oplus$-corank) of $H$. We use Stallings automata to study these notions and the relations between them. In particular, we characterize when complements exist, compute the $\vee$-corank, and provide language-theoretical descriptions of the sets of cyclic complements. Finally, we prove that the two notions of corank coincide on subgroups that admit cyclic complements of both kinds.

Source : oai:arXiv.org:1905.12597

Volume: Volume 12, issue 1

Published on: March 2, 2020

Submitted on: January 28, 2020

Keywords: Mathematics - Group Theory

This page has been seen 214 times.

This article's PDF has been downloaded 135 times.