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Abstract. We study the problems of testing isomorphism of polynomials, algebras, and
multilinear forms. Our first main results are average-case algorithms for these problems.
For example, we develop an algorithm that takes two cubic forms f, g ∈ Fq[x1, . . . , xn], and
decides whether f and g are isomorphic in time qO(n) for most f . This average-case setting
has direct practical implications, having been studied in multivariate cryptography since
the 1990s. Our second result concerns the complexity of testing equivalence of alternating
trilinear forms. This problem is of interest in both mathematics and cryptography. We
show that this problem is polynomial-time equivalent to testing equivalence of symmetric
trilinear forms, by showing that they are both Tensor Isomorphism-complete (Grochow
& Qiao, ITCS, 2021), therefore is equivalent to testing isomorphism of cubic forms over
most fields.

1. Introduction

In this paper, we study isomorphism testing problems for polynomials, algebras, and multilin-
ear forms. Our first set of results is algorithmic, namely presenting average-case algorithms
for these problems (Section 1.1). Our second result is complexity-theoretic, concerning the
problems of testing equivalence of symmetric and alternating trilinear forms (Section 1.2).

Key words and phrases: polynomial isomorphism, algebra isomorphism, tensor isomorphism, complete-
ness, average-case algorithms.
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1.1. Average-case algorithms for polynomial isomorphism and more. The poly-
nomial isomorphism problem. Let F be a field, and let X = {x1, . . . , xn} be a set of
variables. Let GL(n,F) be the general linear group consisting of n × n invertible matrices
over F. A natural group action of A = (ai,j) ∈ GL(n,F) on the polynomial ring F[X] sends
f(x1, . . . , xn) to f ◦ A := f(

∑n
j=1 a1,jxj , . . . ,

∑n
j=1 an,jxj). The polynomial isomorphism

problem (PI) asks, given f, g ∈ F[X], whether there exists A ∈ GL(n,F) such that f = g ◦A.
In the literature, this problem was also called the polynomial equivalence problem [AS05].

An important subcase of PI is when the input polynomials are required to be homoge-
neous of degree d. In this case, this problem is referred to as the homogeneous polynomial
isomorphism problem, denoted as d-HPI. Homogeneous degree-3 (resp. degree-2) polynomi-
als are also known as cubic (resp. quadratic) forms.

In this article, we assume that a polynomial is represented in algorithms by its list of
coefficients of the monomials, though other representations like algebraic circuits are also
possible in this context [Kay11]. Furthermore, we shall mostly restrict our attention to the
case when the polynomial degrees are constant.

Motivations to study polynomial isomorphism. The polynomial isomorphism problem
has been studied in both multivariate cryptography and computational complexity. In 1996,
inspired by the celebrated zero-knowledge protocol for graph isomorphism [GMW91], Patarin
proposed to use PI as the security basis of authentication and signature protocols [Pat96].
This lead to a series of works on practical algorithms for PI; see [Bou11,BFP15, IQ19] and
references therein. In 1997, Grigoriev studied shift-equivalence of polynomials, and discussed
equivalence of polynomials under more general groups [Gri97]. In the early 2000s, Agrawal,
Kayal and Saxena studied PI from the computational complexity perspective. They related
PI with graph isomorphism and algebra isomorphism [AS05,AS06], and studied some special
instances of PI [Kay11] as well as several related algorithmic tasks [Sax06].

Despite these works, little progress has been made on algorithms with rigorous analysis
for the general PI. More specifically, Kayal’s algorithm [Kay11] runs in randomized polyno-
mial time, works for the degree d ≥ 4, and doesn’t require the field to be finite. However,
it only works in the multilinear setting, namely when f and g are isomorphic to a common
multilinear polynomial h. The algorithms from multivariate cryptography [Bou11] either
are heuristic, or need unproven assumptions. While these works contain several nice ideas
and insights, and their implementations show practical improvements, they are nonetheless
heuristic in nature, and rigorously analyzing them seems difficult. Indeed, if any of these
algorithms had worst-case analysis matching their heuristic performance, it would lead to
significant progress on the long-open Group Isomorphism problem (see, e.g., [LQ17,GQ21b]).

Our result on polynomial isomorphism. Our first result is an average-case algorithm
with rigorous analysis for PI over a finite field Fq. As far as we know, this is the first non-
trivial algorithm with rigorous analysis for PI over finite fields. (The natural brute-force
algorithm, namely enumerating all invertible matrices, runs in time qn2 · poly(n, log q).)
Furthermore, the average-case setting is quite natural, as it is precisely the one studied
multivariate cryptography. We shall elaborate on this further after stating our result.

To state the result, let us define what a random polynomial means in this setting. Since
we represent polynomials by their lists of coefficients, a random polynomial of degree d
is naturally the one whose coefficients of the monomials of degree ≤ d are independently
uniformly drawn from Fq. We also consider the homogeneous setting where only monomials
of degree = d are of interest.



Vol. 14:1 AVERAGE-CASE ALGORITHMS FOR POLYNOMIAL ISOMORPHISM 1:3

Theorem 1.1. Let d ≥ 3 be a constant. Let f, g ∈ Fq[x1, . . . , xn] be (resp. homogeneous)
polynomials of degree ≤ d (resp. = d). There exists an qO(n)-time algorithm that decides
whether f and g are isomorphic, for all but at most 1

qΩ(n) fraction of f .
Furthermore, if f and g are isomorphic, then this algorithm also computes an invertible

matrix A which sends f to g.

Let us briefly indicate the use of this average-case setting in multivariate cryptography.
In the authentication scheme described in [Pat96], the public key consists of two polynomials
f, g ∈ Fq[x1, . . . , xn], where f is a random polynomial, and g is obtained by applying a
random invertible matrix to f . Then f and g form the public key, and any isomorphism
from f to g can serve as the private key. Therefore, the algorithm in Theorem 1.1 can be
used to recover a private key for most f .

Adapting the algorithm strategy to more isomorphism problems. In [AS05,AS06],
the algebra isomorphism problem (AI) was studied and shown to be (almost) polynomial-
time equivalent to PI. In [GQ21b], many more problems are demonstrated to be polynomial-
time equivalent to PI, including the trilinear form equivalence problem (TFE). In these re-
ductions, due to the blow-up of the parameters, the qO(n)-time algorithm in Theorem 1.1 does
not translate to moderately exponential-time, average-case algorithms for these problems.
The algorithm design idea, however, does translate to give moderately exponential-time,
average-case algorithms for AI and TFE. These will be presented in Section 3.4.

1.2. Complexity of symmetric and alternating trilinear form equivalence. From
cubic forms to symmetric and alternating trilinear forms. In the context of poly-
nomial isomorphism, cubic forms are of particular interest. In complexity theory, it was
shown that d-HPI reduces to cubic form isomorphism over fields with dth roots of unity
[AS05,AS06]. In multivariate cryptography, cubic form isomorphism also received special
attention, since using higher degree forms results in less efficiency in the cryptographic
protocols.

Just as quadratic forms are closely related with symmetric bilinear forms, cubic forms
are closely related with symmetric trilinear forms. Let F be a field of characteristic not 2 or
3, and let f =

∑
1≤i≤j≤k≤n ai,j,kxixjxk ∈ F[x1, . . . , xn] be a cubic form. For any i, j, k ∈ [n],

let 1 ≤ i′ ≤ j′ ≤ k′ ≤ n be the result of sorting i, j, k in the increasing order, and set
ai,j,k = ai′,j′,k′ . Then we can define a symmetric1 trilinear form φf : Fn × Fn × Fn → F by

φf (u, v, w) =
∑
i∈[n]

ai,i,iuiviwi+
1

3
·

∑
i,j,k∈[n]

two of i,j,k are the same

ai,j,kuivjwk+
1

6
·

∑
i,j,k∈[n]

i,j,k all different

ai,j,kuivjwk.

It can be seen easily that for any v = (v1, . . . , vn)t ∈ Fn, f(v1, . . . , vn) = φf (v, v, v).
In the theory of bilinear forms, symmetric and skew-symmetric bilinear forms are two

important special subclasses. For example, they are critical in the classifications of classical
groups [Wey97] and finite simple groups [Wil09b]. For trilinear forms, we also have skew-
symmetric trilinear forms. In fact, to avoid some complications over fields of characteristics 2
or 3, we shall consider alternating trilinear forms which are closely related to skew-symmetric
ones. For trilinear forms, the exceptional groups of type E6 can be constructed as the

1That is, for any permutation σ ∈ S3, φ(u1, u2, u3) = φ(uσ(1), uσ(2), uσ(3))
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stabilizer of certain symmetric trilinear forms, and those of type G2 can be constructed as
the stabilizer of certain alternating trilinear forms.

We say that a trilinear form φ : Fn × Fn × Fn → F is alternating, if whenever two
arguments of φ are equal, φ evaluates to zero. Note that this implies skew-symmetry, namely
for any u1, u2, u3 ∈ Fn and any σ ∈ S3, φ(u1, u2, u3) = sgn(σ) · φ(uσ(1), uσ(2), uσ(3)). Over
fields of characteristic zero or > 3, this is equivalent to skew-symmetry.

The trilinear form equivalence problem. Given a trilinear form φ : Fn × Fn × Fn → F,
A ∈ GL(n,F) naturally acts on φ by sending it to φ◦A := φ(A−1(u), A−1(v), A−1(w)). The
trilinear form equivalence problem then asks, given two trilinear forms φ, ψ : Fn×Fn×Fn → F,
whether there exists A ∈ GL(n,F), such that φ = ψ◦A. Over fields of characteristic not 2 or
3, two cubic forms f and g are isomorphic if and only if φf and φg are equivalent, so cubic
form isomorphism is polynomial-time equivalent to symmetric trilinear form equivalence
over such fields. Note that for clarity, we reserve the term “isomorphism” for polynomials
(and cubic forms), and use “equivalence” for multilinear forms.

Motivations to study alternating trilinear form equivalence. Our main interest is
to study the complexity of alternating trilinear form equivalence, with the following motiva-
tions.

The first motivation comes from cryptography. To store a symmetric trilinear form on
Fnq ,

(
n+2

3

)
field elements are required. To store an alternating trilinear form on Fnq ,

(
n
3

)
field elements are needed. The difference between

(
n+2

3

)
and

(
n
3

)
could be significant for

practical purposes. For example, when n = 9,
(
n+2

3

)
=
(

11
3

)
= 165, while

(
n
3

)
=
(

9
3

)
= 84.

This means that in the authentication protocol of Patarin [Pat96], using alternating trilinear
forms instead of cubic forms for n = 9,2 one saves almost one half in the public key size,
which is an important saving in practice.

The second motivation originates from comparing symmetric and alternating bilinear
forms. It is well-known that, in the bilinear case, the structure of alternating forms is
simpler than that for symmetric ones [Lan02]. Indeed, up to equivalence, an alternating
bilinear form is completely determined by its rank over any field, while the classification of
symmetric bilinear forms depends crucially on the underlying field. For example, recall that
over R, a symmetric form is determined by its “signature”, so just the rank is not enough.

A third motivation is implied by the representation theory of the general linear groups;
namely that alternating trilinear forms are the “last” natural case for d = 3. If we consider
the action of GL(n,C) acting on d-tensors in Cn ⊗ Cn ⊗ · · · ⊗ Cn diagonally (that is, the
same matrix acts on each tensor factor), it is a classical result [Wey97] that the invariant
subspaces of (Cn)⊗d under this action are completely determined by the irreducible rep-
resentations of GL(n,C). When d = 3, there are only three such representations, which
correspond precisely to: symmetric trilinear forms, Lie algebras, and alternating trilinear
forms. From the complexity point of view, it was previously shown that isomorphism of
symmetric trilinear forms [AS05,AS06] and Lie algebras [GQ21b] are equivalent to algebra
isomorphism. Here we show that the last case, isomorphism of alternating trilinear forms,
is also equivalent to the others.

2The parameters of the cryptosystem are q and n. When q = 2, n = 9 is not secure as it can be solved
in practice [BFFP11]. So q needs to be large for n = 9 to be secure. Interestingly, according to [Bou11, pp.
227], the parameters q = 16 and n = 8 seemed difficult for practical attacks via Gröbner basis.
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The complexity of alternating trilinear form equivalence. Given the above discus-
sion on the comparison between symmetric and alternating bilinear forms, one may wonder
whether alternating trilinear form equivalence was easier than symmetric trilinear form equiv-
alence. Interestingly, we show that this is not the case; rather, they are polynomial-time
equivalent.

Theorem 1.2. The alternating trilinear form equivalence problem is polynomial-time equiv-
alent to the symmetric trilinear form equivalence problem.

Note here that the reduction from alternating to symmetric trilinear form equivalence
requires us to go through the tensor isomorphism problem, which causes polynomial blow-
ups in the dimensions of the underlying vector spaces. Therefore, though these two problems
are polynomial-time equivalent, these problems may result in cryptosystems with different
efficiencies for a given security level.

1.3. Previous works. The relation between PI and AI. As mentioned in Section 1.1,
the degree-d homogeneous polynomial isomorphism problem (d-HPI) was shown to be almost
equivalent to the algebra isomorphism problem (AI) in [AS05,AS06]. (See Section 3.4 for
the formal definition of algebra isomorphism problem.) Here, almost refers to that for the
reduction from d-HPI to AI in [AS05,AS06], the underlying fields are required to contain
a dth root of unity. When d = 3, this means that the characteristic of the underlying field
p satisfies that p = 2 mod 3 or p = 0, which amounts to half of the primes. In [GQ21b],
another reduction from 3-HPI to AI was presented, which works for fields of characteristics
not 2 or 3. The reduction from AI to 3-HPI in [AS06] works over any field.

The tensor isomorphism complete class. In [FGS19,GQ21b], polynomial-time equiv-
alences are proved between isomorphism testing of many more mathematical structures,
including tensors, matrix spaces, polynomial maps, and so on. These problems arise from
many areas: besides multivariate cryptography and computational complexity, they appear
in quantum information, machine learning, and computational group theory. This motivates
the authors of [GQ21b] to define the tensor isomorphism complete class TI, which we recall
here.

Definition 1.3 (The d-Tensor Isomorphism problem, and the complexity class TI). d-
Tensor Isomorphism over a field F is the problem: given two d-way arrays A = (ai1,...,id)
and B = (bi1,...,id), where ik ∈ [nk] for k ∈ [d], and ai1,...,id , bi1,...,id ∈ F, decide whether there
are Pk ∈ GL(nk,F) for k ∈ [d], such that for all i1, . . . , id,

ai1,...,id =
∑

j1,...,jd

bj1,...,jd(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd . (1.1)

For any field F, TIF denotes the class of problems that are polynomial-time Turing
(Cook) reducible to d-Tensor Isomorphism over F, for some d. A problem is TIF-complete,
if it is in TIF, and d-Tensor Isomorphism over F for any d reduces to this problem.

When a problem is naturally defined and is TIF-complete over any F, then we can simply
write that it is TI-complete.

The authors of [GQ21b] further utilised this connection between tensors and groups
to show search-to-decision, counting-to-decision, and nilpotency class results for p-group
isomorphism [GQ21a].



1:6 J.A. Grochow, Y. Qiao, and G. Tang Vol. 14:1

Average-case algorithms for matrix space isometry. In [LQ17,BLQW20], motivated
by testing isomorphism of p-groups (widely believed to be the hardest cases of Group Iso-
morphism, see e.g. [GQ17]), the algorithmic problem alternating matrix space isometry was
studied. (In the literature [Wil09a], this problem was also known as the alternating bilinear
map pseudo-isometry problem.) That problem asks the following: given two linear spaces
of alternating matrices A,B ≤ Λ(n, q), decide whether there exists T ∈ GL(n, q), such that
A = T tBT = {T tBT : B ∈ B}. (See Section 2 for the definition of alternating matri-
ces.) The main result of [BLQW20], improving upon the one in [LQ17], is an average-case
algorithm for this problem in time qO(n+m), where m = dim(A).

1.4. Remarks on the technical side. Techniques for proving Theorem 1.1. The
algorithm for PI in Theorem 1.1 is based on the algorithmic idea from [LQ17, BLQW20].
However, to adapt that idea to the PI setting, there are several interesting conceptual and
technical difficulties.

One conceptual difficulty is that for alternating matrix space isometry, there are actually
two GL actions, one is by GL(n, q) as explicitly described above, and the other is by GL(m, q)
performing the basis change of matrix spaces. The algorithm in [BLQW20] crucially uses
that the GL(m, q) action is “independent” of the GL(n, q) action. For PI, there is only one
GL(n, q)-action acting on all the variables. Fortunately, as shown in Section 3.1, there is
still a natural way of applying the the basic idea from [LQ17,BLQW20].

One technical difficulty is that the analysis in [BLQW20] relies on properties of random
alternating matrices, while for 3-HPI, the analysis relies on properties of random symmetric
matrices. To adapt the proof strategy in [BLQW20] (based on [LQ17]) to the symmetric
setting is not difficult, but suggests some interesting differences between symmetric and
alternating matrices (see the discussion after Claim 3.3).

Techniques for proving Theorem 1.2. By [FGS19], the trilinear form equivalence prob-
lem is in TI, and so are the special cases symmetric and alternating trilinear form equivalence.
The proof of Theorem 1.2 goes by showing that both symmetric and alternating trilinear
form equivalence are TI-hard.

Technically, the basic proof strategy is to adapt a gadget construction, which originates
from [FGS19] and then is further used in [GQ21b]. To use that gadget in the trilinear
form setting does require several non-trivial ideas. First, we identify the right TI-complete
problem to start with, namely the alternating (resp. symmetric) matrix space isometry
problem. Second, we need to arrange a 3-way array A, representing a linear basis of an
alternating (resp. symmetric) matrix spaces, into one representing an alternating trilinear
form. This requires 3 copies of A, assembled in an appropriate manner. Third, we need
to add the gadget in three directions (instead of just two as in previous results). All these
features were not present in [FGS19,GQ21b]. The correctness proof also requires certain
tricky twists compared with those in [FGS19] and [GQ21b].

Structure of the paper. In Section 2 we present certain preliminaries. In Section 3
we show average-case algorithms for polynomial isomorphism, algebra isomorphism, and
trilinear form isomorphism, proving Theorem 1.1. In Section 4 we prove Theorem 1.2.
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2. Preliminaries

Notations. We collect the notations here, though some of them have appeared in Section 1.
Let F be a field. Vectors in Fn are column vectors. Let ei denote the ith standard basis
vector of Fn. Let M(`×n,F) be the linear space of `×n matrices over F, and set M(n,F) :=
M(n× n,F). Let In denote the identity matrix of size n. For A ∈ M(n,F), A is symmetric
if At = A, and alternating if for every v ∈ Fn, vtAv = 0. When the characteristic of F is
not 2, A is alternating if and only if A is skew-symmetric. Let S(n,F) be the linear space of
n×n symmetric matrices over F, and let Λ(n,F) be the linear space of alternating matrices
over F. When F = Fq, we may write M(n,Fq) as M(n, q). We use 〈·〉 to denote the linear
span.

3-way arrays. A 3-way array over a field F is an array with three indices whose elements
are from F. We use M(n1 × n2 × n3,F) to denote the linear space of 3-way arrays of side
lengths n1 × n2 × n3 over F.

Let A ∈ M(` × n × m,F). For k ∈ [m], the kth frontal slice of A is (ai,j,k)i∈[`],j∈[n] ∈
M(` × n,F). For j ∈ [n], the jth vertical slice of A is (ai,j,k)i∈[`],k∈[m] ∈ M(` ×m,F). For
i ∈ [`], the ith horizontal slice of A is (ai,j,k)j∈[n],k∈[m] ∈ M(n×m,F). We shall often think
of A as a matrix tuple in M(`× n,F)m consisting of its frontal slices.

A natural action of (P,Q,R) ∈ GL(`,F)×GL(n,F)×GL(m,F) sends a 3-way array A ∈
M(`×n×m,F) to P tARQ, defined as follows. First represent A as anm-tuple of `×nmatrices
A = (A1, . . . , Am) ∈ M(`×n,F)m. Then P andQ sendA to P tAQ = (P tA1Q, . . . , P

tAmQ),
and R = (ri,j) sends A to (A′1, . . . , A

′
m) where A′i =

∑
j∈[m] ri,jAj . Clearly, the actions of

P , Q, and R commute. The resulting m-tuple of ` × n matrices obtained by applying P ,
Q, and R to A is then P tARQ. Note that up to possibly relabelling indices, the entries of
P tARQ are explicitly defined as in Equation 1.1.

Useful results. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ M(n,F)m. Given T ∈
GL(n,F), let T tAT = (T tA1T, . . . , T

tAmT ). We say that A and B are isometric, if there
exists T ∈ GL(n,F) such that T tAT = B. Let Iso(A,B) = {T ∈ GL(n,F) : A = T tBT},
and set Aut(A) := Iso(A,A). Clearly, Aut(A) is a subgroup of GL(n, q), and Iso(A,B) is
either empty or a coset of Aut(A).

Theorem 2.1 ( [BW12, IQ19]). Let A,B ∈ S(n, q)m (resp. Λ(n, q)m) for some odd q.
There exists a poly(n,m, q)-time deterministic algorithm which takes A and B as inputs and
outputs Iso(A,B), specified by (if nonempty) a generating set of Aut(A) (by the algorithm
in [BW12]) and a coset representative T ∈ Iso(A,B) (by the algorithm in [IQ19]).

3. Average-case algorithms for polynomial isomorphism and more

We shall present the algorithm for the cubic form isomorphism problem in detail in Sec-
tion 3.1. Based on this result, we present the proof of our main Theorem 1.1 in Section 3.2.
The proof of the main technical lemma, Lemma 3.2, is in Section 3.3. We will present our
results for problems such as algebra isomorphism in Section 3.4.
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3.1. Cubic form isomorphism over fields of odd order. We present the algorithm for
cubic form isomorphism over fields of odd characteristic, as this algorithm already captures
the essence of the idea, and cubic forms are most interesting from the PI perspective as
mentioned in Section 1.2. A full proof of Theorem 1.1, which is a relatively minor extension
of Theorem 3.1, is put in Section 3.2.

Theorem 3.1. Let Fq be a finite field of odd order, and X = {x1, . . . , xn} be a set of
commuting variables. Let f, g ∈ Fq[X] be two cubic forms. There exists a deterministic
algorithm that decides whether f and g are isomorphic in time qO(n), for all but at most

1
qΩ(n) fraction of f .

Proof. Let r be a constant to be determined later on, and suppose n is sufficiently larger
than r. Our goal is to find T ∈ GL(n, q), such that f = g ◦ T .

The algorithm consists of two main steps. Let us first give an overview of the two steps.
In the first step, we show that there exists a set of at most qO(rn)-many T1 ∈ GL(n, q),

such that every T ∈ GL(n, q) can be written as T1T2, where T2 is of the form[
Ir 0
0 R

]
. (3.1)

Furthermore, such T1 can be enumerated in time qO(rn). We then set g1 = g ◦ T1.
In the second step, we focus on searching for T2 such that f = g1 ◦ T2. The key

observation is that those T2 as in Equation 3.1 leave xi, i ∈ [r], invariant, and send xj ,
j ∈ [r+1, n], to a linear combination of xk, k ∈ [r+1, n]. It follows that for any fixed i ∈ [r],
T2 sends

∑
r+1≤j≤k≤n ai,j,kxixjxk to a linear combination of xixjxk, r+ 1 ≤ j ≤ k ≤ n. We

will use this observation to show that for a random f , the number of T2 satisfying f = g1◦T2

is upper bounded by qn with high probability. Furthermore, such T2, if they exist, can be
enumerated efficiently. This allows us to go over all possible T2 and test if f = g1 ◦ T2.

The first step. We show that there exist at most qO(rn)-many T1 ∈ GL(n, q), such that
any T ∈ GL(n, q) can be written as T1T2 where T2 is of the form as in Equation 3.1.

Recall that ei is the ith standard basis vector. Let Er = 〈e1, . . . , er〉, and let Fr =
〈er+1, . . . , en〉. Suppose for i ∈ [r], T (ei) = ui, and T (Fr) = V ≤ Fnq . Let T1 be any
invertible matrix that satisfies T1(ei) = ui, and T1(Fr) = V . Let T2 = T−1

1 T . Then T2

satisfies that for i ∈ [r], T2(ei) = ei, and T2(Fr) = Fr. In other words, T2 is of the form in
Equation 3.1.

We then need to show that these T1 can be enumerated in time qO(rn).
Recall that T1 is determined by the images of ei, i ∈ [r], and Fr ≤ Fnq . So we first

enumerate matrices of the form
[
u1 . . . ur er+1 . . . en

]
, where ui ∈ Fnq are linearly

independent. We then need to enumerate the possible images of Fr. Let U = 〈u1, . . . , ur〉.
Then the image of Fr is a complement subspace of U . It is well-known that the number of
complement subspaces of a dimension-r space is ∼ qr(n−r). To enumerate all complement
subspaces of U , first compute one complement subspace V = 〈v1, . . . , vn−r〉. Then it is easy
to verify that, when going over A = (ai,j)i∈[r],j∈[n−r] ∈ M(r× (n− r), q), 〈vj +

∑
i∈[r] ai,jui :

j ∈ [n − r]〉 go over all complement subspaces of U . It follows that we can enumerate
matrices T1 of the form

[
u1 . . . ur v1 +

∑
i∈[r] ai,1ui . . . vn−r +

∑
i∈[r] ai,n−rui

]
.
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The second step. In Step 1, we computed a set of invertible matrices {T1} ⊆ GL(n, q)

such that every T ∈ GL(n, q) can be written as T = T1T2 where T2 =

[
Ir 0
0 R

]
. So we set

h := g ◦ T1 and focus on finding T2 of the above form such that f = h ◦ T2.
Suppose f =

∑
1≤i≤j≤k≤n αi,j,kxixjxk, and h =

∑
1≤i≤j≤k≤n βi,j,kxixjxk. For i ∈ [r],

define fi =
∑

r+1≤j≤k≤n αi,j,kxixjxk. Similarly define hi.
The key observation is that, due to the form of T2, we have that fi = hi ◦ T2. This

is because for i ∈ [r], T2 sends xi to xi, and for j ∈ [r + 1, n], T2 sends xj to a linear
combination of xk, k ∈ [r + 1, n].

Let ` = n − r. We then rename the variable xr+i, i ∈ [`] as yi. Let Y = {y1, . . . , y`}.
Then from f , we define r quadratic forms in Y ,

∀i ∈ [r], ci =
∑

1≤j≤k≤`
α′i,j,kyjyk, where α

′
i,j,k = αi,r+j,r+k. (3.2)

Correspondingly, we define r quadratic forms di =
∑

1≤j≤k≤` β
′
i,j,kyjyk, i ∈ [r], from g1.

Our task now is to search for the R ∈ GL(`, q) such that for every i ∈ [r], ci = di ◦R.
To do that, we adopt the classical representation of quadratic forms as symmetric matri-

ces. Here we use the assumption that q is odd. Using the classical correspondence between
quadratic forms and symmetric matrices, from ci we construct

Ci =


α′i,1,1

1
2α
′
i,1,2 . . . 1

2α
′
i,1,`

1
2α
′
i,1,2 α′i,2,2 . . . 1

2α
′
i,2,`

...
...

. . .
...

1
2α
′
i,1,`

1
2α
′
i,2,` . . . α′i,`,`

 ∈ S(`, q). (3.3)

Similarly define Di from di. It is classical that ci = di ◦R if and only if Ci = RtDiR.
Let C = (C1, . . . , Cr) ∈ S(`, q)r, and D = (D1, . . . , Dr) ∈ S(`, q)r. Recall that

Aut(C) = {R ∈ GL(`,F) : RtCR = C}, and Iso(C,D) = {R ∈ GL(`,F) : C = RtDR}.
Clearly, Iso(C,D) is a (possibly empty) coset of Aut(C). When Iso(C,D) is non-empty,
|Iso(C,D)| = |Aut(C)|. Our main technical lemma is the following, obtained by adapting
certain results in [LQ17,BLQW20] to the symmetric matrix setting. Its proof is postponed
to Section 3.3.

Lemma 3.2. Let C = (C1, . . . , C8) ∈ S(`, q)8 be a random symmetric matrix tuple. Then
we have |Aut(C)| ≤ q` for all but at most 1

qΩ(`) fraction of such C.

Given this lemma, we can use Theorem 2.1 to decide whether C and D are isometric,
and if so, compute Iso(C,D) represented as a coset in GL(`, q). By Lemma 3.2, for all but
at most 1

qΩ(`) fraction of C, |Iso(C,D)| ≤ q` ≤ qn. With Iso(C,D) as a coset at hand, we
can enumerate all elements in Aut(C) by the standard recursive closure algorithm [Luk93]
and therefore all elements in Iso(C,D). We then either conclude that |Iso(C,D)| > qn,
or have all Iso(C,D) at hand. In the former case we conclude that C does not satisfy
the required generic condition. In the latter case, we enumerate R ∈ Iso(C,D), and check

whether T2 =

[
Ir 0
0 R

]
is an isomorphism from f to g1.

The algorithm outline. We now summarise the above steps in the following algorithm
outline. In the following we assume that n � 8; otherwise we can use the brute-force
algorithm.
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Input: Cubic forms f, g ∈ Fq[x1, . . . , xn].
Output: One of the following: (1) “f does not satisfy the generic condition”; (2) “f and g
are not isomorphic”; (3) an isomorphism T ∈ GL(n, q) sending g to f .

Algorithm outline: (1) Set r = 8, and ` = n− r.
(2) Compute W = {T1} ⊆ GL(n, q) using the procedure described in Step 1.

// Every T ∈ GL(n, q) can be written as T1T2 where T2 is of the form in Equation 3.1.
(3) For every T1 ∈W , do the following:

(a) h :← g ◦ T1.
(b) For i ∈ [`], yi ← xr+i.
(c) For i ∈ [r], let Ci ∈ S(`, q) be defined in Equation 3.3. Let Di ∈ S(`, q) be defined

from h in the same way. Let C = (C1, . . . , Cr), and D = (D1, . . . , Dr).
(d) Use Theorem 2.1 to decide whether C and D are isometric. If not, break from

the loop. If so, compute one isometry R.
(e) Use Theorem 2.1 to compute a generating set of Aut(C). Use the recursive closure

algorithm to enumerate Aut(C). During the enumertion, if |Aut(C)| > q`, report
“f does not satisfy the generic condition.” Otherwise, we have the whole Aut(C)
at hand, which is of size ≤ q`.

(f) Given R from Line 3d and Aut(C) from Line 3e, the whole set Iso(C,D) can be

computed. For every R ∈ Iso(C,D), check whether T2 =

[
Ir 0
0 R

]
sends h to f .

If so, return T = T1T2 as an isomorphism sending g to f .
(4) Return that “f and g are not isomorphic”.

Correctness and timing analyses. The correctness of the algorithm relies on the simple
fact that if f satisfies the genericity condition, and f and g are isomorphic via some T ∈
GL(n, q), then this T can be decomposed as T1T2 for some T1 ∈ W from Line 2. Then by

the analysis in Step 2, T2 =

[
Ir 0
0 R

]
where R ∈ Iso(C,D). When f satisfies the genericity

condition, Iso(C,D) will be enumerated, so this R will surely be encountered.
To estimate the time complexity of the algorithm, note that |W | ≤ qO(rn), and |Iso(C,D)| ≤

q` = qn−r. As other steps are performed in time poly(n,m, q), enumerating over W and
Iso(C,D) dominates the time complexity. Recall that r = 8. So the total time complexity
is upper bounded by qO(n).

3.2. Proof of the remaining cases of Theorem 1.1. Given Theorem 3.1, we can com-
plete the proof of Theorem 1.1 easily.

Proof. Cubic forms over fields of characteristic 2. In Theorem 3.1 we solved the
case for cubic forms over fields of odd orders. We now consider cubic forms over fields of
characteristic 2.

In this case, one difficulty is that we cannot use the correspondence between quadratic
forms and symmetric matrices as used in Equation 3.3. Still, this difficulty can be overcome
as follows. Let f =

∑
1≤i≤j≤k≤n αi,j,kxixjxk where αi,j,k ∈ Fq, q is a power of 2. We

follow the proof strategy of Theorem 3.1. Step 1 stays exactly the same. In Step 2, we

have f and g1, and the question is to look for T2 =

[
Ir 0
0 R

]
such that f = g1 ◦ T2. We



Vol. 14:1 AVERAGE-CASE ALGORITHMS FOR POLYNOMIAL ISOMORPHISM 1:11

still consider the quadratic forms ci =
∑

1≤j≤k≤` αi,j,kyjyk for i ∈ [r]. Now note that
(
∑

j∈[`] βjyj)
2 =

∑
j∈[`] β

2
j y

2
j over fields of characteristic 2. So the monomials y2

j do not
contribute to yjyk for j 6= k under linear transformations. It follows that we can restrict our
attention to c′i =

∑
1≤j<k≤` α

′
i,j,kyjyk for i ∈ [r], and define alternating matrices

Ci =


0 α′i,1,2 . . . α′i,1,`

α′i,1,2 0 . . . α′i,2,`
...

...
. . .

...
α′i,1,` α′i,2,` . . . 0

 (3.4)

for i ∈ [r] to get C ∈ Λ(`, q)r. Note that Ci is alternating because we work over fields of
characteristic 2. Similarly construct D ∈ Λ(`, q)r from g1. It can then be verified that, for

T2 =

[
Ir 0
0 R

]
to be an isomorphism from g1 to f , it is necessary that R is an isometry from

D to C. We then use [BLQW20, Proposition 12], which is the alternating matrix version of
our Lemma 3.2. That proposition ensures that for r = 20, all but at most 1

qΩ(`) fraction of
C has |Aut(C)| ≤ q`. This explains how the first difficulty is overcome.

However, there is a second difficulty, namely Theorem 2.1 do not apply to fields of
characteristic 2. We sketch how to overcome this difficulty here. The key is to look into
the proof of [BLQW20, Proposition 12], which in fact ensures that Adj(C) = {(A,E) ∈
M(`, q) ⊕M(`, q) | AtC = CE} is of size ≤ q` for random C. Note that Adj(C) is a linear
space and a linear basis of Adj(C) can be solved efficiently. Therefore, replacing Aut(C)
with Adj(C) and Iso(C,D) with Adj(C,D) = {(A,E) ∈ M(`, q)⊕M(`, q) | AtC = DE}, we
can proceed as in the proof of Theorem 3.1. The interested readers may refer to [BLQW20]
for the details.

Degree-d forms. Let us then consider degree-d forms. In this case, we follow the proof of
Theorem 3.1. Step 1 stays exactly the same. In Step 2, instead of

∑
1≤j≤k≤n αi,j,kxixjxk

for i ∈ [r], we work with
∑

1≤j≤k≤n αi,j,kx
d−2
i xjxk, noting that matrices in the form in

Equation 3.1 preserve the set of monomials {xd−2
i xjxk}. Then for odd q case, construct

symmetric matrices as in Equation 3.3 and proceed as in the rest of Theorem 3.1. For the
even q case, construct alternating matrices as in Equation 3.4, and procees as described
above.

Degree-d polynomials. We now consider degree-d polynomials. In this case, we can single
out the degree-d piece and work as in degree-d form case. The only change is that in the
verification step, we need to take into account the monomials of degree < d as well.

This concludes the proof of Theorem 1.1.

3.3. Proof of Lemma 3.2. Recall that C = (C1, . . . , C8) ∈ S(`, q)8 is a tuple of random
symmetric matrices, and Aut(C) = {R ∈ GL(`, q) : RtCR = C}. Our goal is to prove that
|Aut(C)| ≤ q` for all but at most 1

qΩ(`) fraction of random C.
Let Adj(C) := {(R,S) ∈ M(`, q) ⊕M(`, q) : RtC = CS}. It is clear that |Aut(C)| ≤

|Adj(C)|. We will in fact prove that with high probability, |Adj(C)| ≤ q`. The proof of the
following mostly follows the proofs for general matrix spaces as in [LQ17] and alternating
matrix spaces as in [BLQW20].
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To start with, we make use the following result from [LQ17]. We say that D =
(D1, . . . , Dr) ∈ M(`, q)r is stable3, if for any U ≤ F`q, 1 ≤ dim(U) ≤ ` − 1, dim(D(U)) >
dim(U), where D(U) = 〈∪i∈[r]Di(U)〉, and Di(U) denotes the image of U under Di.

Claim 3.3 ( [LQ17, Prop. 10 in the arXiv version]). If D ≤ M(`, q) is stable, then
|Adj(D)| ≤ q`.

Therefore, we turn to show that a random C ∈ S(`, q)8 is stable with high probability.
This was shown for random matrix tuples in M(`, q)4 in [LQ17], and random alternating
matrix tuples in Λ(`, q)16 in [BLQW20]. The proof strategy for the symmetric case is
similar, but certain differences between the symmetric and alternating matrices do arise, as
reflected in the following.

Our goal is to show that

Pr[C ∈ S(`, q)8 is not stable] ≤ 1

qΩ(`)
.

By definition, we have

Pr[C ∈ S(`, q)8 is not stable] = Pr[∃U ≤ F`q, 1 ≤ dim(U) ≤ n− 1,dim(U) ≥ dim(C(U))].

By union bound, we have

Pr[∃U ≤ F`q, 1 ≤ dim(U) ≤ n− 1, dim(U) ≥ dim(C(U))]

≤
∑

U≤F`q ,1≤dim(U)≤n−1

Pr[dim(U) ≥ dim(C(U))].

For d ∈ [` − 1], let Ed = 〈e1, . . . , ed〉. Let U ≤ F`q, dim(U) = d. We claim that
Pr[dim(U) ≥ dim(C(U))] = Pr[dim(Ed) ≥ dim(C(Ed))]. To see this, note that there exists
P ∈ GL(`, q) such that P (Ed) = U . Then observe that dim((P tCP )(Ed)) = dim(C(U)). It
follows that dim(C(U)) ≤ dim(U) if and only if dim((P tCP )(Ed)) ≤ dim(Ed). The claim
then follows, by observing that the map S(`, q)r → S(`, q)r via P t · P is bijective. As a
consequence, for any d ∈ [n− 1], we have∑

U≤F`q ,dim(U)=d

Pr[dim(U) ≥ dim(C(U))] =

[
`

d

]
q

· Pr[dim(C(Ed)) ≤ d].

Let Cdi be the submatrix of Ci consisting of the first d columns of Ci, and let Cd =[
Cd1 . . . Cdr

]
∈ M(` × rd, q). Then dim(C(Ed)) = rk(Cd). Note that each Cdi is of the

form [
Cdi,1
Cdi,2

]
(3.5)

where Cdi,1 is a random symmetric matrix of size d× d, and Cdi,2 is a random matrix of size
(`− d)× d.

We then need to prove the following result, from which our desired result would follow.
Here we set r = 8.

Proposition 3.4. Let Cd ∈ M(` × 8d, q) be in the form above. Then we have
[
`
d

]
q
·

Pr[rk(Cd) ≤ d] ≤ 1
qΩ(`) ,

3Note that the stable notion in [LQ17] deals with a more general setting when the matrices are not
necessarily square. Our definition here coincides with the one in [LQ17] when restricting to square matrices.
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To prove Proposition 3.4, we utilise the following result from [LQ17].

Proposition 3.5 ([LQ17, Proposition 20]). Let D ∈ M(`×4d, q) be a random matrix, where
1 ≤ d ≤ `− 1. Then

[
`
d

]
q
· Pr[rk(D) ≤ d] ≤ 1

qΩ(`) .

To use the above result in our setting, however, there is a caveat caused by the symmetric
structure of Cdi,1 for i ∈ [r]. This is resolved by observing the following claim, which basically
says that we can simulate one random matrix in M(d, q) using two random symmetric
matrices in S(d, q).

Claim 3.6. Let X and Y be two random symmetric matrices from S(d, q), i.e.

X =


x1,1 x1,2 · · · x1,d

x1,2 x2,2 · · · x2,d
...

...
. . .

...
x1,d x2,d · · · xd,d

 , Y =


y1,1 y1,2 · · · y1,d

y1,2 y2,2 · · · y2,d
...

...
. . .

...
y1,d y2,d · · · yd,d


Then

Z =


x1,1 + y1,2 x1,2 + y1,3 · · · x1,d + y1,1

x1,2 + y2,2 x2,2 + y2,3 · · · x2,d + y1,2
...

...
. . .

...
x1,d + y2,d x2,d + y3,d · · · xd,d + y1,d


is a uniformly sampled random matrix in M(d, q), when X and Y are sampled in uniformly
random from S(d, q).

Proof. Let zi,j be the (i, j)th entry of Z. Note that each xi,j (resp. yi,j), i 6= j, appear
exactly twice in Z on an antidiagonal z1,i, z2,i−1, . . . , zi−1,1, zi,n, zi+1,n−1, . . . , zn,i+1. So we
can focus on such an antidiagonal to show that when xi,j and yi,j are uniformly sampled
from Fq, zi,j are also uniformly sampled from Fq.

Let us first consider the case when d is odd. Let us consider a specific one, say z1,1 =
x1,1 + y1,2, z2,d = x2,d + y1,2, . . . , zd,2 = x2,d + y3,d. Other antidiagonals are of the same
structure. It can be verified that this is a system of d linear equations in d + 1 variables
of rank d. It follows that when those xi,j and yk,` involved are sampled in uniform random
from Fq, zi′,j′ are also in uniformly random distribution.

The case when d is even can be verified similarly. This concludes the proof.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. Recall that Cd =
[
Cd1 . . . Cd8

]
, where Cdi ∈ M(` × d, q) is of

the form in Equation 3.5. For i ∈ [4], let C ′di ∈ M(` × d, q) be constructed from Cd2i−1, C
d
2i

as in Claim 3.6, and set C ′d =
[
C ′d1 . . . C ′d4

]
. It is clear that rk(Cd) ≥ rk(C ′d), so[

`
d

]
q
· Pr[rk(Cd) ≤ d] ≤

[
`
d

]
q
· Pr[rk(C ′d) ≤ d]. By Claim 3.6, C ′d is a random matrix

in M(` × 4d, q). By Proposition 3.5,
[
`
d

]
q
· Pr[rk(C ′d) ≤ d] ≤ 1

qΩ(`) . This concludes the
proof.
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3.4. Trilinear form equivalence and algebra isomorphism. We present our results on
trilinear form equivalence and algebra isomorphism, and only sketch the proofs because they
mostly follow that for Theorem 3.1.

Trilinear form equivalence. The trilinear form equivalence problem was stated in Sec-
tion 1.2. In algorithms, a trilinear form f is naturally represented as a 3-way array A = (ai,j,k)
where ai,j,k = f(ei, ej , ek). A random trilinear form over Fq denotes the setting when αi,j,k
are independently sampled from Fq uniformly at random.

Theorem 3.7. Let f : Fnq ×Fnq ×Fnq → Fq be a random trilinear form, and let g : Fnq ×Fnq ×
Fnq → Fq be an arbitrary trilinear form. There exists a deterministic algorithm that decides
whether f and g are equivalent in time qO(n), for all but at most 1

qΩ(n) fraction of f .

Proof. To test equivalence of trilinear forms of f, g : Fnq × Fnq × Fnq → Fq, an average-case
algorithm in time qO(n) can be achieved by following the proof of Theorem 3.1. The only
difference is that, in Step 2 there, instead of symmetric matrices in Equation 3.3, we can
construct general matrices Ci = (α′i,j,k)j,k∈[`]. Then we need a version of Lemma 3.2 for
general matrices, which is already shown in [LQ17, Proposition 19 and 20]. It says that
when r = 4, a random C ∈ M(`, q)4 satisfies that |Aut(C)| ≤ q`. We then proceed exactly
as in Theorem 3.1 for odd q, and for even q we use the technique described in Section 3.2.

Algebra isomorphism. Let V be a vector space. An algebra is a bilinear map ∗ : V ×V →
V . This bilinear map ∗ is considered as the product. Algebras most studied are those with
certain conditions on the product, including unital (∃v ∈ V such that ∀u ∈ V , v ∗ u = u),
associative ((u ∗ v) ∗ w = u ∗ (v ∗ w)), and commutative (u ∗ v = v ∗ u). The authors
of [AS05,AS06] study algebras satisfying these conditions. Here we consider algebras without
such restrictions. Two algebras ∗, · : V × V → V are isomorphic, if there exists T ∈ GL(V ),
such that ∀u, v ∈ V , T (u) ∗ T (v) = T (u · v). As customary in computational algebra, an
algebra is represented by its structure constants, i.e. suppose V ∼= Fn, and fix a basis
{e1, . . . , en}. Then ei ∗ ej =

∑
k∈[n] αi,j,kek, and this 3-way array A = (αi,j,k) records the

structure constants of the algebra with product ∗. A random algebra over Fq denotes the
setting when αi,j,k are independently sampled from Fq uniformly at random.

Theorem 3.8. Let f : Fnq × Fnq → Fnq be a random algebra, and let g : Fnq × Fnq → Fnq be an
arbitrary algebra. There exists a deterministic algorithm that decides whether f and g are
isomorphic in time qO(n), for all but at most 1

qΩ(n) fraction of f .

Proof. Suppose we have two algebras ∗, · : Fnq × Fnq → Fnq , represented by their structure
constants. The proof strategy of Theorem 3.7 carries out to test algebra isomorphism in a
straightforward fashion. The only difference is in the verification step (i.e. Line 3f). More
specifically, we can write an algebra as an element in (Fnq )∗⊗Fnq ⊗Fnq , where (Fnq )∗ is the dual
space of Fnq .4 It follows that we can write ∗ as

∑
i,j,k∈[n] αi,j,ke

∗
i ⊗ej⊗ek. The key difference

with trilinear form equivalence is that for AI, T ∈ GL(n, q) acts on e∗i by its inverse. So the
algorithm for AI is the same as the one for trilinear form equivalence, except that in the
verification step we need to use R−1 instead of R to act on the first argument.

4Note that here we put (Fnq )∗ as the first argument, instead of the last one, in order to be consistent
with the procedure in Proposition 3.7. This is without loss of generality due to the standard isomorphism
between U ⊗ V ⊗W and W ⊗ U ⊗ V .
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4. Complexity of symmetric and alternating trilinear form equivalence

As mentioned in Section 1.4, the proof of Theorem 1.2 follows by showing that symmetric and
alternating trilinear form equivalence are TI-hard (recall Definition 1.3). In the following
we focus on the alternating case. The symmetric case can be tackled in a straightforward
way, by starting from the TI-complete problem, symmetric matrix tuple pseudo-isometry,
from [GQ21b, Theorem B], and modifying the alternating gadget to a symmetric one.

Proposition 4.1. The alternating trilinear form equivalence problem is TI-hard.

Proof. The starting TI-complete problem. We use the following TI-complete problem
from [GQ21b]. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n,F)m be two tuples of
alternating matrices. We say that A and B are pseudo-isometric, if there exist C ∈ GL(n,F)
andD = (di,j) ∈ GL(m,F), such that for any i ∈ [m], Ct(

∑
j∈[m] di,jAj)C = Bi. By [GQ21b,

Theorem B], the alternating matrix tuple pseudo-isometry problem is TI-complete. Without
loss of generality, we assume that dim(〈Ai〉) = dim(〈Bi〉), as if not, then they cannot be
pseudo-isometric, and this dimension condition is easily checked.

An alternating trilinear form φ : Fn × Fn × Fn → F naturally corresponds to a 3-way
array A = (ai,j,k) ∈ M(n × n × n,F), where ai,j,k = φ(ei, ej , ek). Then A is also alternating,
i.e. ai,j,k = 0 if i = j or i = k or j = k, and ai,j,k = sgn(σ)aσ(i),σ(j),σ(k) for any σ ∈ S3. So in
the following, we present a construction of an alternating 3-way array from an alternating
matrix tuple, in such a way that two alternating matrix tuples are pseudo-isometric if and
only if the corresponding alternating trilinear forms are equivalent.

Constructing alternating 3-way arrays from alternating matrix tuples. Given
A = (A1, . . . , Am) ∈ Λ(n,F)m, we first build the n× n×m tensor A which has A1, . . . , Am
as its frontal slices. Then we will use essentially the following construction twice in succession.
We will give two viewpoints on this construction: one algebraic, in terms of trilinear forms,
and another “matricial”, in terms of 3-way arrays. Different readers may prefer one viewpoint
over the other; our opinion is that the algebraic view makes it easier to verify the alternating
property while the matricial view makes it easier to verify the reduction. We thank an
anonymous review for the suggestion of the algebraic viewpoint. The construction is, in some
sense, the 3-tensor analogue of taking an ordinary matrix A and building the alternating

matrix
[

0 A
−At 0

]
.

Notation: Just as the transpose acts on matrices by (At)i,j = Aj,i, for a 3-tensor A, we
have six possible “transposes” corresponding to the six permutations of the three coordinates.
Given σ ∈ S3, we write Aσ for the 3-tensor defined by (Aσ)i1,i2,i3 = Aiσ(1),iσ(2),iσ(3)

.
Given a 3-way array A ∈ M(n×m× d,F), we will make use of A(23) and A(13):

• A(23) is n× d×m and has A(23)
i,j,k = Ai,k,j . Equivalently, the k-th frontal slice of A(23) is the

k-th vertical slice of A.
• A(13) is d×m× n and has A(13)

i,j,k = Ak,j,i. Equivalently, the k-th frontal slice of A(13) is the
transpose of the k-th horizontal slice of A.

Example 4.2 (Running example). Let us examine a simple example as follows. Let A =

(A) ∈ Λ(2,F)1, where A =

[
0 a
−a 0

]
. Then A = (A); A(23) = (A′1, A

′
2) ∈ M(2 × 1 × 2,F),
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where A′1 =

[
0
−a

]
, and A′2 =

[
a
0

]
; A(13) = (A′′1, A

′′
2) ∈ M(1 × 2 × 2,F), where A′′1 =

[
0 a

]
,

and A′′2 =
[
−a 0

]
.

From the above A, A(23), and A(13), we construct Ã ∈ M((n+m)× (n+m)× (n+m),F)
as follows. We divide Ã into the following eight blocks. That is, set Ã = (Ã1, Ã2) (two

block frontal slices) where Ã1 =

[
0n×n×n A(23)

A(13) 0

]
, and Ã2 =

[
−A 0
0 0m×m×m

]
, where 0n×n×n

indicates the n × n × n zero tensor, and analogously for 0m×m×m (the remaining sizes can
be determined from these and the fact that A is n× n×m).

The corresponding construction on trilinear forms is as follows. The original trilinear
form is A(x, y, z) =

∑
i,j∈[n],k∈[m] ai,j,kxiyjzk, where x = (x1, . . . , xn), y = (y1, . . . , yn), and

z = (z1, . . . , zm), and we have A(x, y, z) = −A(y, x, z). The new trilinear form will be
Ã(x′, y′, z′), where

x′ = (x(1), x(2)) = (x
(1)
1 , . . . , x(1)

n , x
(2)
1 , . . . , x(2)

m )

y′ = (y(1), y(2)) = (y
(1)
1 , . . . , y(1)

n , y
(2)
1 , . . . , y(2)

m )

z′ = (z(1), z(2)) = (z
(1)
1 , . . . , z(1)

n , z
(2)
1 , . . . , z(2)

m ).

This new form will satisfy Ã(x′, y′, z′) =
∑

i,j,k∈[n+m] ãi,j,kx
′
iy
′
jz
′
k. Let us unravel what this

looks like from the above description of Ã. We have

Ã(x′, y′, z′) =
∑

i∈[n],j∈[m],k∈[n]

(Ã1)i,n+j,kx
′
iy
′
n+jz

′
k +

∑
i∈[m],j,k∈[n]

(Ã1)n+i,j,kx
′
n+iy

′
jz
′
k

+
∑

i,j∈[n],k∈[m]

(Ã2)i,j,kx
′
iy
′
jz
′
n+k

=
∑

i∈[n],j∈[m],k∈[n]

A
(23)
i,j,kx

′
iy
′
n+jz

′
k +

∑
i∈[m],j,k∈[n]

A
(13)
i,j,kx

′
n+iy

′
jz
′
k −

∑
i,j∈[n],k∈[m]

Ai,j,kx
′
iy
′
jz
′
n+k

=
∑

i∈[n],j∈[m],k∈[n]

Ai,k,jx
′
iy
′
n+jz

′
k +

∑
i∈[m],j,k∈[n]

Ak,j,ix
′
n+iy

′
jz
′
k −

∑
i,j∈[n],k∈[m]

Ai,j,kx
′
iy
′
jz
′
n+k

= A(x(1), z(1), y(2)) +A(z(1), y(1), x(2))−A(x(1), y(1), z(2))

From this formula, and the fact that A(x, y, z) = −A(y, x, z), we can now more easily verify
that Ã is alternating in all three arguments. Since the permutations (13) and (23) generate
S3, it suffices to verify it for these two. We have

Ã(13)(x′, y′, z′) = Ã(z′, y′, x′)

= A(z(1), x(1), y(2)) +A(x(1), y(1), z(2))−A(z(1), y(1), x(2))

= −A(x(1), z(1), y(2)) +A(x(1), y(1), z(2))−A(z(1), y(1), x(2))

= −Ã(x′, y′, z′).
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Similarly, we have:

Ã(23)(x′, y′, z′) = Ã(x′, z′, y′)

= A(x(1), y(1), z(2)) +A(y(1), z(1), x(2))−A(x(1), z(1), y(2))

= A(x(1), y(1), z(2))−A(z(1), y(1), x(2))−A(x(1), z(1), y(2))

= −Ã(x′, y′, z′),

as claimed.

Example 4.3 (Running example, continued from Example 4.2). We can write out Ã in this
case explicitly. The first block frontal slice Ã1 is 3× 3× 2, consisting of the two frontal slices 0 0 0

0 0 −a
0 a 0

 and

 0 0 a
0 0 0
−a 0 0


while the second block frontal slice Ã2 is the 3× 3× 1 matrix 0 −a 0

a 0 0
0 0 0


It can be verified easily that Ã = (ai,j,k) is alternating: the nonzero entries are a2,3,1 = −a,
a3,2,1 = a, a1,3,2 = a, a3,1,2 = −a, a1,2,3 = −a, and a2,1,3 = a, which are consistent with the
signs of the permutations.

The gadget construction. We now describe the gadget construction. The gadget can be
described as a block 3-way array as follows. Construct a 3-way array G of size (n + 1)2 ×
(n+ 1)2 × (n+m) over F as follows. For i ∈ [n], the ith frontal slice of G is

0 0 . . . 0 In+1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 0

−In+1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 0


,

where 0 here denotes the (n+ 1)× (n+ 1) all-zero matrix, In+1 is at the (1, i+ 1)th block
position, and −In+1 is at the (i+1, 1)th block position. For n+1 ≤ i ≤ n+m, the ith frontal
slice of G is the all-zero matrix. We also need the following 3-way arrays derived from G. We
will use G(13) and G(23). Note that G(13) is of size (n+m)× (n+ 1)2 × (n+ 1)2, and its ith
horizontal slice is the ith frontal slice of G. Similarly, G(23) is of size (n+1)2×(n+m)×(n+1)2,
and its jth vertical slice is the jth frontal slice of G.

Finally, construct a 3-tensor Â as follows. It consists of the two block frontal slices[
Ã 0
0 −G

]
and

[
0 G(13)

G(23) 0

]
.



1:18 J.A. Grochow, Y. Qiao, and G. Tang Vol. 14:1

To see how this all fits together, let G1 be the (n+ 1)2 × (n+ 1)2 × n tensor consisting
of the first n frontal slices of G (these are the only nonzero frontal slices of G). Then we may
view Â as having three block frontal slices, namely:0n×n×n A(23) 0

A(13) 0m×m×n 0
0 0 −G1

 ,
−A 0 0

0 0m×m×m 0
0 0 0(n+1)2×(n+1)2×m

 ,
and 0n×n×(n+1)2 0 G

(13)
1

0 0m×m×(n+1)2 0

G
(23)
1 0 0

 .
We claim that Â is alternating. To verify this is straightforward but somewhat tedious.

So we use the following example from which a complete proof can be extracted easily.

Example 4.4 (Running example, continued from Example 4.3). Let A be the 2×2×1 tensor

with alternating frontal slice A =

[
0 a
−a 0

]
. In particular, n = 2,m = 1, so G will have size

(n+ 1)2 × (n+ 1)2 × (n+m) = 9× 9× 3, and A will have size n+m+ (n+ 1)2 = 12 in all
three directions. We will write out the first n+m = 3 frontal slices explicitly, as those are
the only ones involving A, and leave the last 9 (involving only transposes of G1) unwritten.

0 0 0
0 0 −a
0 a 0

03 I3 0
−I3 03 0

0 0 03

 ,


0 0 a
0 0 0
−a 0 0

03 0 I3

0 03 0
−I3 0 03

 ,

and


0 a 0
−a 0 0
0 0 0

03 0 0
0 03 0
0 0 03


and the remaining 9 frontal slices look like

0 0 0

0 0 0 G
(13)
1

0 0 0 01×9×9

03×3×9 0 0

G
(23)
1 09×1×9 0 03×3×9 0

0 0 03×3×9


Since the a’s only appear in positions with the same indices as they did in Ã (see Example 4.3),
that portion is still alternating. For the G parts, note that the identity matrices in the first
three frontal slices, when having their indices transposed, end up either in the G(13)

1 portion
or the G(23)

1 portion, with appropriate signs.
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Proof of correctness. Let A,B ∈ Λ(n,F)m. Let Â = (

[
Ã 0
0 −G

]
,

[
0 G(13)

G(23) 0

]
), B̂ =

(

[
B̃ 0
0 −G

]
,

[
0 G(13)

G(23) 0

]
) ∈ M((n+m+(n+1)2)×(n+m+(n+1)2)×(n+m+(n+1)2),F)

be constructed from A and B using the procedure above, respectively.
We claim that A and B are pseudo-isometric if and only if Â and B̂ are equivalent as

trilinear forms.

The only if direction. Suppose P tAP = BQ for some P ∈ GL(n,F) and Q ∈ GL(m,F).

We will construct a trilinear form equivalence from Â to B̂ of the form S =

P 0 0
0 Q−1 0
0 0 R

 ∈
GL(n+m+ (n+ 1)2,F), where R ∈ GL((n+ 1)2,F) is to be determined later on.

Recall that Â = (

[
Ã 0
0 −G

]
,

[
0 G(13)

G(23) 0

]
), B̂ = (

[
B̃ 0
0 −G

]
,

[
0 G(13)

G(23) 0

]
). It can be

verified that the action of S sends Ã to B̃. It remains to show that, by choosing an appropriate
R, the action of S also sends G to G.

Let G1 be the first n frontal slices of G, and G2 the last m frontal slices from G. Then
the action of S sends G1 to RtGP1 R, and G2 to RtG

Q−1

2 R. Since G2 is all-zero, the action of S
on G2 results in an all-zero tensor, so we have RtG

Q−1

2 R = G2.
We then turn to G1. For i ∈ [n + 1], consider the ith horizontal slice of G1, which is of

the form Hi =
[
0 B1,i B2,i . . . Bn,i

]
, where 0 denotes the n× (n + 1) all-zero matrix,

and Bj,i is the n × (n + 1) elementary matrix with the (j, i)th entry being 1, and other
entries being 0. Note that those non-zero entries of Hi are in the (k(n+ 1) + i)th columns,
for k ∈ [n]. Let P t =

[
p1 . . . pn

]
, where pi is the ith column of P t. Then P acts on Hi

from the left, which yields P tHi =
[
0 P1,i . . . Pn,i

]
, where Pj,i denotes the n× (n + 1)

matrix with the ith column being pj , and the other columns being 0.

Let us first set R =

[
In+1 0

0 R̂

]
, where R̂ is to be determined later on. Then the left

action of R on G1 preserves Hi through In+1. The right action of R on G1 translates to the
right action of R̂ on Hi. To send P tHi back to Hi, R̂ needs to act on those (k(n+ 1) + i)th
columns of Hi, i ∈ [n + 1], as P−1. Note that for Hi and Hj , i 6= j, those columns with
non-zero entries are disjoint. This gives R̂ the freedom to handle different Hi’s separately.
In other words, R̂ can be set as P−1 ⊗ In+1. This ensures that for every Hi, P tHiR̂ = Hi.
To summarize, we have RtGP1 R = G1, and this concludes the proof for the only if direction.

The if direction. Suppose Â and B̂ are isomorphic as trilinear forms via P ∈ GL(n+m+

(n+ 1)2,F). Set P =

P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

, where P1,1 is of size n× n, P2,2 is of size m×m,

and P3,3 is of size (n+ 1)2 × (n+ 1)2. Consider the ranks of the frontal slices of Â.
• The ranks of the first n frontal slices are in [2(n+1), 4n]. This is because a frontal slice in
this range consists of two copies of vertical slices of A (whose ranks are between [0, n− 1]
due to the alternating condition), and one frontal slice of G (whose ranks are of 2(n+ 1)).
• The ranks of the n+ 1 to n+m frontal slices are in [0, n]. This is because a frontal slice
in this range consists of only just one frontal slice of A.
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• The ranks of the last n(n+ 1) vertical slices are in [0, 2n]. This is because a frontal slice
in this range consists of two copies of horizontal slices of G (whose ranks are either n or 1;
see e.g. the form of Hi in the proof of the only if direction).

By the discussions above, we claim that that P must be of the form

P1,1 0 0
P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

.
To see this, for the sake of contradiction, suppose there are non-zero entries in P1,2 or P1,3.
Then a non-trivial linear combination of the first n frontal slices is added to one of the last
(m+(n+1)2) frontal slices. This implies that for this slice, the lower-right (n+1)2×(n+1)2

submatrix is of the form


0 a1In+1 a2In+1 . . . anIn+1

−a1In+1 0 0 . . . 0
−a2In+1 0 0 . . . 0

...
...

...
. . .

...
−anIn+1 0 0 . . . 0

, where one of ai ∈ F

is non-zero. Then this slice is of rank ≥ 2(n + 1), which is unchanged by left (resp. right)
multiplying P t (resp. P ), so it cannot be equal to the corresponding slice of B̂ which is of
rank ≤ 2n. We then arrived at the desired contradiction.

Now consider the action of such P on the n+ 1 to n+m frontal slices. Note that these

slices are of the form

Ai 0 0
0 0 0
0 0 0

. (Recall that the last m slices of G are all-zero matrices.)

Then we have

P t
1,1 P t

2,1 P t
3,1

0 P t
2,2 P t

3,2

0 P t
2,3 P t

3,3

Ai 0 0
0 0 0
0 0 0

P1,1 0 0
P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

 =

P t
1,1AiP1,1 0 0

0 0 0
0 0 0

 .
Since P tÂPP = B̂, we have P tÂP = B̂P

−1 . Observe that for the upper-left n×n submatrices
of the frontal slices of B̂, P−1 simply performs a linear combination of Bi’s. It follows that
every P t

1,1AiP1,1 is in the linear span of Bi. Since we assumed dim(〈Ai〉) = dim(〈Bi〉), we
have that A and B are pseudo-isometric. This concludes the proof of Proposition 4.1.
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