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Abstract. In [FGRS1, FGRS2] the relationship between the universal and elementary
theory of a group ring R[G] and the corresponding universal and elementary theory of the
associated group G and ring R was examined. Here we assume that R is a commutative
ring with identity 1 6= 0. Of course, these are relative to an appropriate logical language
L0, L1, L2 for groups, rings and group rings respectively. Axiom systems for these were
provided in [FGRS1]. In [FGRS1] it was proved that if R[G] is elementarily equivalent to
S[H] with respect to L2, then simultaneously the group G is elementarily equivalent to
the group H with respect to L0, and the ring R is elementarily equivalent to the ring S
with respect to L1. We then let F be a rank 2 free group and Z be the ring of integers.
Examining the universal theory of the free group ring Z[F ] the hazy conjecture was made
that the universal sentences true in Z[F ] are precisely the universal sentences true in F
modified appropriately for group ring theory and the converse that the universal sentences
true in F are the universal sentences true in Z[F ] modified appropriately for group theory.
In this paper we show this conjecture to be true in terms of axiom systems for Z[F ].
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1. Introduction

In [FGRS1, FGRS2] the relationship was examined between the universal and elementary
theory of a group ring R[G] and the corresponding universal and elementary theory of the
associated group G and ring R. Here we assume that R is a commutative ring with identity
1 6= 0. These are relative to an appropriate logical language L0, L1, L2 for groups, rings and
group rings respectively. Axiom systems for these were provided in [FGRS1]. In [FGRS1]
it was then proved that if R[G] is elementarily equivalent to S[H] with respect to L2 then
simultaneously the group G is elementarily equivalent to the group H with respect to L0

and the ring R is elementarily equivalent to the ring S with respect to L1. We then let F be
a rank 2 free group and Z be the ring of integers. We call the group ring Z[F ] a free group
ring. It is easy to prove (see [FGRS1]) that all free group rings for non-abelian free groups
have the same universal theory. A Kaplansky group G is a group G where the group ring
K[G] with K a field has no zero divisors. Subsequently in [FGRS3] it was shown that the
class of Kaplansky groups is universally axiomatizable. In [BM] Bakulin and Myasnikov
establish a set of axioms for the universal theory of the Kaplansky Groups.

Myasnikov and Remeslennikov [MR] have given axiom systems for the universal theory
of non-abelian free groups. In particular they proved that if F is a non-abelian free group
then the universal theory of F is axiomatized by (see section 2 for relevant definition) the
diagram of F , the strict universal Horn sentences of L0[F ] true in F and group commutative
transitivity (see sections 3 and 4 for relevant definitons). In this paper we extend this to
axiom systems for free group rings and prove that the universal theory of a free group ring
Z[F ] is axiomatized by the diagram of Z[F ], the strict universal Horn sentences of L2[Z[F ]]
true in Z[F ] and ring commutative transitivity when the models are restricted to group
rings. Hence if R[G] satisfies the diagram of Z[F ] and the strict universal Horn sentences
true in Z[F ] and ring commutative transitivity then R[G] is universally equivalent to Z[F ].
Since the axiom systems are precisely of the same form modified for each theory the hazy
conjecture follows.

In the next section we give the necessary preliminaries on group theory, logic and axiom
systems. In section 3 we present some straightforward observations on the universal theory
of free group rings. Finally in section 4 we prove the main results.

2. Basic Preliminaries

For a general algebraic structure, for example a group, a ring, a field or an algebra, A, its
elementary theory is the set of all first-order sentences in a logical language appropriate
for that structure, true in A. Hence if F is a given free group, its elementary theory consists
of all first-order sentences in a language appropriate for group theory that are true in F .
Two algebraic structures are elementary equivalent or elementarily equivalent if they
have the same elementary theory. The Tarski theorems proved by Kharlampovich and
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Myasnikov and independently by Sela (see [FGMRS]) say that all non-abelian free groups
satisfy the same elementary theory. Kharlampovich and Myasnikov also showed that the
elementary theory of free groups is decidable, that is, there is an algorithm to decide if any
elementary sentence is true in all free groups or not. For a group ring they have proved
that the first-order theory (in the language of ring theory) is not decidable and have studied
equations over group rings especially for torsion-free hyperbolic groups.

The set of universal sentences in an algebraic structure A that are true in A is its
universal theory while two structures are universally equivalent if they have the same
universal theory. It is straightforward to show that all non-abelian free groups have the same
universal theory (see [FGMRS]). As part of the general solution to the Tarski theorems it
was shown that a finitely generated non-abelian group is universally free (that is has the
same universal theory as a non-abelian free group) if and only if it is a limit group.

If F is a non-abelian free group then a free group ring is Z[F ]. In this note we consider
axiom systems for universal theories of free group rings.

In [FGRS1] we introduced three first-order languages with equality Ln, n = 0, 1, 2 and
listed axiom systems Tn expressed in Ln. We view a group as a model of T0, a ring as a
model of T1. Moreover, we view the class of group rings as a subclass of the model class of
T2.

In the next section we make some observations on free group rings. Then in section 4
we review some further necessary material on elementary and universal theory. In section 4
we also present our main results.

We first review the elementary and universal theory of groups. A first-order sentence in
group theory has logical symbols ∀,∃,∨,∧,∼ but no quantification over sets. A first-order
theorem in a free group is a theorem that says a first-order sentence is true in all non-abelian
free groups. We make this a bit more precise:

We start with a first-order language appropriate for group theory. This language, which
we denote by L0, is the first-order language with equality containing a binary operation
symbol •, a unary operation symbol −1 and a constant symbol 1. A universal sentence of
L0 is one of the form ∀x{φ(x)} where x is a tuple of distinct variables, φ(x) is a formula
of L0 containing no quantifiers and containing at most the variables of x. Similarly an
existential sentence is one of the form ∃x{φ(x)} where x and φ(x) are as above. A
universal-existential sentence is one of the form ∀x∃y{φ(x, y)}. Similarly defined is
an existential-universal sentence. It is known that every sentence of L0 is logically
equivalent to one of the form Q1x1 ...Qnxnφ(x) where x = (x1, ..., xn) is a tuple of distinct
variables, each Qi for i = 1, ..., n is a quantifier, either ∀ or ∃, and φ(x) is a formula of L0

containing no quantifiers and containing free at most the variables x1, ..., xn. Further vacuous
quantifications are permitted. Finally a positive sentence is one logically equivalent to a
sentence constructed using (at most) the connectives ∨,∧, ∀, ∃.
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If G is a group then the universal theory of G consists of the set of all universal
sentences of L0 true in G. We denote the universal theory of a group G by Th∀(G). Since
any universal sentence is equivalent to the negation of an existential sentence it follows that
two groups have the same universal theory if and only if they have the same existential
theory. The set of all sentences of L0 true in G is called the first-order theory or the
elementary theory of G. We denote this by Th(G). We note that being first-order or
elementary means that in the intended interpretation of any formula or sentence all of the
variables (free or bound) are assumed to take on as values only individual group elements -
never, for example, subsets of, nor functions on, the group in which they are interpreted.

We say that two groups G and H are elementarily equivalent (symbolically G ≡ H)
if they have the same first-order theory, that is Th(G) = Th(H).

Prior to the solution of the Tarski problems, it was asked whether there exist finitely
generated non-free elementary free groups. By this it was meant that if all countable
non-abelian free groups do have the same first-order theory do there exist finitely generated
non-free groups with exactly the same first-order theory as the class of non-abelian free
groups. We note that if we omit the requirement of finite generation we have ∗F = F I/D
is elementarily free but not free if F is a free non-abelian group and D is a nonprincipal
ultrafilter. However ∗F is not finitely generated or even countable.

In the finitely generated case, the answer is yes, and both the Kharlampovich-Myasnikov
solution and the Sela solution provide a complete characterization of the finitely generated
elementary free groups. In the Kharlampovich-Myasnikov formulation these are given as
a special class of what are termed NTQ groups (see [FGMRS]).The primary examples of
non-free elementary free groups are the orientable surface groups of genus g ≥ 2 and the
non-orientable surface groups of genus g ≥ 4 (see [FGMRS]). Recall that a surface group
is the fundamental group of a compact surface. If the surface is orientable it is an orientable
surface group otherwise a non-orientable surface group.

3. Some Observations on Free Group Rings

If L is a first-order language with equality let us call L-structures algebras (as opposed
to relational systems) provided L contains no relational symbols. If A and B are L-
algebras we say that A discriminates B provided, given finitely many pairs (xi, yi) of
unequal elements of B, xi 6= yi, i = 1, ..., n, there is a homomorphism ϕ : B → A such that
ϕ(xi) 6= ϕ(yi) for all i = 1, ..., n.

If R is a ring with identity 1 6= 0, we let U(R) be its group of units.

Definition 3.1. Let R be a commutative ring with identity 1 6= 0 and let G be a group. An
element of U(R[G]) is said to be a trivial unit provided it has the form ug where u ∈ U(R)
and g ∈ G.
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We need the following ideas:

Definition 3.2. Let F = 〈a1, a2; 〉 and let G be a group. G is residually free provided,
for every g ∈ G\{1}, there is a homomorphism ϕ : G→ F such that ϕ(g) 6= 1. Extending
this a group is fully residually free porvided for every finite set g1, ..., gn of nontrivial
elements of G there is a homomorphism ϕ : G→ F such that ϕ(gi) 6= 1 for each gi.

Definition 3.3. A group G is orderable provided it admits a linear order < satisfying the
conditions that hg1 < hg2 whenever g1 < g2 and g1h < g2h whenever g1 < g2 as g1, g2 and
h vary over G.

It is well known that free groups are orderable. See e.g. [N]. One can find, for example
in Passman’s book [P], that, if K is a field and G is an orderable group, then K[G] has trivial
units only. From that it easily follows that if D is an integral domain and G is an orderable
group, then D[G] has trivial units only. In analogy with groups a ring R is residually-Z
if for any nontrivial r ∈ R there exists a homomorhism φ onto Z such that φ(r) 6= 0. A
ring R with identity 1 6= 0 which is discriminated by Z is said to be ω-residually Z. Such
rings have characteristic zero so Z ≤ R. A ring all of whose finitely generated subrings are
ω-residually Z is said to be locally ω-residually Z.

It is known that all nonabelian free groups have the same universal theory. A group is
universally free if it has the same universal theory as a nonabelian free group. Commutative
transitivity ( the CT Property), that is the property that commutativity is transitive on on
non-identity elements, plays a fundamental role in the study of universally free groups and
hence in the solution of the Tarski problems via the following theorem due independently to
Gaglione and Spellman [GS] and Remeslennikov [Re].

Theorem 3.4 ([GS, Re]). Suppose G is residually free. Then the following are equivalent:

(1) G is fully residually free,
(2) G is commutative transitive,
(3) G is universally free if non-abelian.

In [FGRS1] an analog of this theorem within the context of free group rings was proved.

We now make some straightforward observations about free group rings showing the
ties to free groups. First is the observation that group rings satisfy an analog of the Nielsen-
Schreier theorem. In analogy with other algebraic structures a sub-(group ring) is a subset
of a group ring which is also a group ring under the same operations.

Theorem 3.5. Let A = Z[F ] be a free group ring. If B is a sub-(group-ring) of A then B
is a free group ring, that is B = R[H] for some ring R and some free group H.

Proof. Since F is free the only units in A are ±1, the elements of F and −f for f ∈ F . Since
B is a subring of A, H is included in the set of units in A, that is F ∪ −F . Now if H ⊂ F ,
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then H is a free group by the Nielsen-Schreier theorem. Assume to deduce a contradiction
that H is not free. Then there must be a nontrivial dependence relation among the elements
of H say W = 1. If the number of elements of W that comes from −F is even then when
these are multiplied out we get W1 = 1 which is a nontrivial dependence relation in F
and so a contradiction. Otherwise if the number of elements of W that come from −F is
odd then when these are multiplied out we get −W1 = 1. When this is squared we get a
contradiction.

A finitely generated free group cannot be isomorphic to a proper quotient of itself [MKS].
This is the well-known Hopfian property and is extremely important in free group theory.
We prove two strong generalizations of the Hopfian property to certain group rings which in
turn implies that a free group ring is Hopfian within the class of group rings, that is within
the class of group rings, A[G] cannot be isomorphic to a proper quotient of A.

We first prove.

Theorem 3.6. Let G be a finitely generated residually finite group. Then the group ring
A = Z[G] is Hopfian relative to group rings, that is A cannot be isomorphic, within the class
of group rings, to a proper quotient of A.

It is well-known in group theory that a finitely generated residually finite group must
be Hopfian. Straightforward proofs of this can be found in the books by D. Robinson [DR]
and Magnus, Karrass and Solitar [MKS]. Mimicking exactly the proof in Robinson’s book
we get the extended result for rings.

Theorem 3.7. Let R be a finitely generated ring. If R is residually finite as a ring then R
cannot be isomorphic to a proper quotient of itself.

Proof. To prove the result for Z[G] and G a residually finite, finitely generated group we
need only show that Z[G] is both finitely generated and residually finite as a ring.

Recall that a residually finite group (or ring) G is fully residually finite. To see this,
notice that if g1, .., gn are finitely many nontrivial elements of G then there exist finite
groups Hi and epimorphisms φi : G → Hi such that φi(gi) 6= 1 for all i = 1..., n. Let
H = H1× ...×Hn. Then H is finite and there exists an epimorphism φ = φi× ....×φn from
G→ H with φ(gi) 6= 1 for i = 1, .., n.

Now let G be a finitely generated residually finite group and A = Z[G] the integral
group ring over G. Let S = {s1, .., sn} be a set of generators for G and S−1 = {s−11 , ..., s−1n }.
Then {S ∪ S−1} gives a finite set of ring generators for A. Hence A is finitely generated as a
ring. We must show that A is residually finte.

Suppose that r = n1g1 + .... + nmgm 6= 0 is an arbitrary nonzero element in A with
distinct elements g1, ..., gm ∈ G. Since G is fully residually finite there exists a finite group H
and a group epimorphism φ : G→ H which does not annihilate any gig

−1
j with 1 ≤ i, j ≤ m.
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We then get an epimorphism ψ : Z[G] → Z[H] by ψ :
∑

j njgj →
∑

j njφ(gj) and further

ψ(r) = ψ(n1g1 + ...+ nmgm) = n1φ(g1) + ...+ nmφ(gm) 6= 0 in Z[H].

Choose a prime p large enough so that p - ni for 1 ≤ i ≤ m. Then there exists a ring
epimorphism π : Z[H]→ Zp[H] given by

π :
∑
ht

ntht →
∑
ht

ntht

where nt is the residue class for nt mod p. Then

π(r) = π(n1g1 + ...+ nmgm) = n1φ(g1)....+ nmφ(gm) 6= 0

in Zp[H]. The ring Zp[H] is a finite ring so πψ is an epimorphism from Z[G] to Zp[H] which
does not annihilate r. Since r is an arbitrary nonzero element of A it follows that A = Z[G]
is residually finite.

Therefore Z[G] is both finitely generated and residually finite as a ring and hence is
Hopfian.

Since finitely generated free groups are residually finite we get directly.

Corollary 3.8. Let F be a finitely generated free group. Then the free group ring Z[F ] is
Hopfian.

Essentially the same proof gives the following stronger generalization.

Theorem 3.9. Let R be a finitely generated residually finite commutative ring with identity
1 6= 0 and G a finitely generated residually finite group. Then the group ring R[G] is finitely
generated and residually finite and hence Hopfian.

The final straightforward result is the Howson property for free group rings. Recall
that for free groups the Howson property says that the intersection of two finitely generated
subgroups of a free group is again finitely generated [LS]. The same result follows directly
for finitely generated sub-(group rings) of a free group ring.

Theorem 3.10. Let A, B be two finitely generated sub-(group rings) of a finitely generated
free group ring Z[F ]. Then A ∩B is finitely generated.

Proof. Since A and B are finitely generated sub-(group rings) then A = Z[G] and B = Z[H]
where G and H are finitely generated subgroups of the free group F . The result follows
from the Howson property in F .

The proof generalizes to show that if a group G satisfies the Howson property as a group
then the integral group ring Z[G] satisfies the Howson property as a group ring.
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4. Axiomatics for the Universal Theory of Free Group Rings

A group G is an H-group if it contains as a subgroup an isomorphic copy of H. Further
if Li is one of our three main languages, (groups, rings and group rings), and G is an
appropriate model of Li then Li[G]-structures are those models which include the elements
of G as constants. For the next we refer to Chang and Keisler [CK]. We need to define a
quasivariety.

Recall that Li for i = 0, 1, 2 are appropriate logical languages for groups (L0),rings (L1)
and group rings (L2). A quasi-identity of Li is a universal sentence of the form

∀x

(∧
i

(Si(x) = si(x))→ (T (x) = t(x))

)
where x is a tuple of distinct variables and Si(x), si(x), T (x) and t(x) are terms of Li
involving at most the variables in x.

A quasivariety of groups is the model class of a set of quasi-identities of L0 together
with the group axioms.

A formula φ of a language L is a basic Horn formula if and only if φ is a disjunction
of formulas φi, φ = φ1 ∨ · · · ∨ φn where at most one of the formulas φi is an atomic formula,
the rest being the negation of atomic formulas. Then a basic Horn formula is a strict
basic Horn formula if and only if some φi is an atomic formula. A Horn formula is a
conjunction of basic Horn formulas. Then a universal sentence ∀xφ(x) is a strict universal
Horn sentence provided φ(x) is a strict basic Horn formula. In the case that L is an
algebra, that is has no relational symbols, then a strict universal Horn sentence in L is up
to logical equivalence a quasi-identity of L. For a model A of a language its diagram is
the set of atomic and negated atomic sentences of L[A] true in A. Hence the diagram of
a group G (a group ring R[G]) is the set of atomic and negated atomic sentences of L0[G]
(L2(R[G]) true in G (in R[G])

Finally we call a group ring which is universally equivalent with respect to the language
L2 to the integral group ring Z[F ] where F is a non-abelian free group a universally free
group ring.

Myasnikov and Remeslennikov [MR] proved the following. A group is CSA or conjugately
separated abelian if maximal abelian subgroups are malnormal. A subgroup M of a group
G is malnormal if g−1Mg ∩M 6= {1} implies that g ∈M . The CSA property implies CT.

Theorem 4.1. Let G be a non-abelian CSA group which is equationally Noetherian. Then
the universal theory of G with respect to L0[G] is axiomatizbale by the set Q of quasi-identities
of L0[G] true in G together with CT when the models are restricted to be G-groups.

It was subsequently shown by Fine, Gaglione and Spellman [FGS] that the equationally
Noetherian condition is not necessary and hence we have the following.
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Theorem 4.2. Let F be a non-abelian free group. Then any F -group H which is a model
of the set Q of quasi-identities of L0[F ] true in F together with CT is already a model of the
universal theory of F with respect to L0[F ].

Our result is a direct analog of this result in the context of group rings containing the
free group ring Z[F ]. Recall that if R[G] is a group ring and x ∈ R[G] then Γ(x) means that
x ∈ G while P(x) indicates the x ∈ R. We also make the convention that G = Γ(R[G]) and
R = P(R[G]). In the language L2[Z[F ]] commutative transitivity is expressed as

RCT : ∀x, y, z((∼ P(y) ∧ (xy = yx) ∧ (yz = zy))→ (xz = zx)).

It is known that that the elementary theory of a CT group G is axiomatized by the
set H(G) of Horn sentences true in G together with CT (see [MR]). Further Myasnikov
and Remeslennikov have proved [MR] the universal theory of a CSA group G is given by
the diagram of G, the strict universal Horn sentences of L0[G] true in G and commutative
transitivity. Myasnikov and Remeslennikov required G to be equationally Noetherian but it
was shown in [FGS] that equationally Noetherian is superfluous. In light of this result and
the examples of universal sentences in free group rings the hazy conjecture was made that
the universal theory of a free group rings consisted of the universal theory of free groups
appropriately modified to group ring theory and vice versa. Our main result is the following
which shows this to be true in terms of axiom systems. We obtain a result similar to the
theorem on elementary theory.

Theorem 4.3. Let G be a group and suppose that the group ring R[G] satisfies the diagram
of the free group ring Z[F ], the strict universal Horn sentences of L2[Z[F ]] true in Z[F ] and
ring commutative transitivity. Then R[G] ≡∀ Z[F ] with respect to L2[Z[F ]].

Myasnikov and Remslennikov prove more. If G is any finitely generated non-abelian
CSA group then the universal theory of G with respect to L0[G] is axiomatizable by the
diagram of G, the set of quasi-identities of L0[G] true in G and CT. The same proof as for
the free group ring Z[F ] goes through to give:

Theorem 4.4. Let H be a nonabelian torsion-free CSA group and suppose that G is a
torsion-free group. If the group ring R[G] satisfies the diagram of the group ring Z[H] the
strict universal Horn sentences of L2[Z[H]] true in Z[H] and ring commutative transitivity
then R[G] ≡∀ Z[H] with respect to L2[Z[H]].

The proofs of the results follow as corollaries of the proof of the next theorem which is
the group ring analog of the Gaglione-Spellman-Remeslennikov result for groups.

Theorem 4.5. Let F be a non-abelian free group. Let R[H] be a group ring containing
Z[F ] which is a model of the set S of strict universal Horn sentences of L2[Z[F ]] true in
Z[F ]. Then the following are equivalent:

(1) R[H] is CT
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(2) R[H] is a model of the universal theory of Z[F ] with respect to L2[Z[F ]]

Proof. To prove this we need some preliminary results. First note that (2) implies (1) is
trivial since Z[F ] is commutative transitive by [M]. The difficulty is in the proof that (1)
implies (2). To do this we first need the following proposition and it corollary.

Proposition 4.6. Let G be a group and g ∈ G with infinite order. Then 1− g is not a zero
divisor in the integral group ring Z[G].

Proof. (of proposition) For the proof of the proposition we need the following preliminary
lemma.

Lemma 4.7. Let φ : Z[G] → Z[G] be the endomorphism of the additive group of Z[G]
given by φ(x) = gx for all x ∈ Z[G]. Then 0 is the only fixed point of φ. Similarly if
ψ : Z[G]→ Z[G] is given by ψ(y) = yg for all y ∈ Z[G] then 0 is the only fixed point of ψ.

To prove the lemma we will give the arguments for φ. The argument for ψ is analogous.
Suppose to deduce a contradiction that r1g1 + ...+ rngn is a non-zero fixed point of φ. Here
i < j then gi 6= gj and ri ∈ Z \ {0} for 1 ≤ i ≤ n. Let S = {g1, ..., gn}. Then φ must restrict
to a permutation π of S with π having finite order N . Then φN (gi) = gi for i = 1, ..., n so
gNgi = gi for i = 1, ..., n. From gNg1 = g1 we get that gN = 1 contradicting the hypothesis
that g has infinite order. This shows that 0 can be only fixed point of φ. An analogous
argument follows for ψ completing the proof of the lemma.

We now return to the proof of the proposition, It follows that ker(1 − φ) = {0} =
ker(1− ψ). Then 0 = (1− g)x = (1− φ)(x) implies that x = 0, Similarly 0 = y(1− g) = 0
implies that y = 0, hence 1−g is not a zero divisor in Z[G] and the proposition is proved.

If g has finite order n then 1− g is a zero divisor in Z[G]. A straightforward induction
establishes the following corollary,

Corollary 4.8. Let G be a torsion-free group. Then (1− g1)(1− g2) · · · (1− gn) = 0 in Z[G]
if and only if at least one gi = 1.

Now we return to the proof of Theorem 4.5 and the difficult part that (1) implies (2).
Let G be a torsion-free group and let H be a torsion-free G-group. Recall that a primitive
sentence is an existential sentence whose matrix is a conjunction of atomic sentences and
negations of atomic sentences.

H is a model in L0[G] of Th∀(G) if and only if every primitive sentence of L0[G] true
in H is also true in G. Equivalently H is a model of Th∀(G) if and only if every negated
primitive sentence of L0[G] true in G is also true in H. Now consider a primitive sentence

∃x(∧pi=1(ui(x) = 1) ∧ ∧qj=1(wj(x) 6= 1))
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of L0[G] where x = (x1, ..., xk) is a tuple of distinct variables. The negation of this is
equivalent to

∀x(∨pi=1(ui(x) 6= 1) ∨ ∨qj=1(wj(x) = 1))

which is equivalent to

∀x(∼ (∧pi=1(ui(x) = 1)) ∨ ∨qj=1(wj(x) = 1))

which in turn is equivalent to

∀x((∧pi=1ui(x) = 1)→ ∨qj=1(wj(x) = 1))

In view of the fact that (1− g1) · · · (1− gq) = 0 in Z[G] if and only if at least one gj = 1
the above sentence of L0[G] is equivalent to the following strict universal Horn sentence of
L2[Z[G]]

∀x((∧kν=1Γ(xν) ∧ ∧pi=1(ui(x) = 1))→ ((1− w1(x)) · · · (1− wq(x)) = 0))

It follows that if Z[H] is a model of the above strict universal Horn sentences of L2[Z[G]]
true in Z[H] then H is a model of Th∀(G).

Now let F be a nonabelian free group, let G be an F -group and let R[G] be the group
ring where R is a commutative ring with 1 6= 0 and of characteristic 0. We may view R as
an extension of Z. Suppose that R[G] is commutative transitive and is a model of the strict
universal Horn sentences of L2[Z[F ]] true in Z[F ]. Now let R0 be a finitely generated unital
subring of R. We claim that R0 is residually-Z.

To see this suppose that r1, ..., rn generate R0. Then R0 is a homomorphic image of
the integral polynomial ring Z[x1, ..., xn] where we get a surjective homomorphism onto
R0 by xi 7→ ri with i = 1, ..., n. By the Hilbert Basis Theorem Z[x1, ..., xn] is Noetherian.
Hence if K = ker(Z[x1, ..., xn]→ R0) then K is finitely generated as an ideal. Suppose that
g1(x1, ..., xn), ..., gk(x1, ..., xn) generate K as an ideal. Suppose to deduce a contradiction
that s ∈ R0 \ {0} is annihilated by every retraction ρ : R0 → Z.

Letting s = f(r1, .., rn) we have the following quasi-identity

∀x1, ...., xn(∧ki=1 ∧ (gi(x1, ..., xn) = 0)→ (f(x1, ..., xn) = 0))

true in Z. Thus the following strict universal Horn sentence of L2[Z[G]] is true in Z[G];

∀x1, ..., xn((∧nj=1P(xj) ∧ ∧ki=1(gi(x1, ..., xn) = 0))→ (f(x1, ..., xn) = 0))

hence it is true in R[G]. However that is contradicted by the substitution

xi 7→ ri, i = 1, ..., n

since f(r1, ..., rn) 6= 0.

This contradiction shows that R0 is residually-Z.

We now claim that R and therefore R0 also is an integral domain. Suppose not. Let
(u, v) ∈ (R \ {0})2 with uv = 0. Fix a, b ∈ F ⊂ G with ab 6= ba. Now in R[G], ua commutes
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with vb which commute with ub. By commutative transitivity ua and ub commute. Therefore
u2ab = u2ba in R[G]. The strict universal Horn sentence of L2[Z[G]]

∀x((P(x) ∧ (x2 = 0))→ (x = 0))

is true in Z[F ]. Hence it holds in R[G] and therefore u2 6= 0. By uniqueness of representation
ab = ba giving a contradiction. Therefore both R and R0 are integral domains.

It follows then that R0 is ω-residually-Z since if s1, .., , sn are finitely many non-zero
elements of R0 there is a retraction ρ : R0 → Z which does not annihilate their product.
From ρ(s1) · · · ρ(sn) = ρ(s1 · · · sn) 6= 0 we get ρ(si) 6= 0 for i = 1, ..., n. Since R0 was an
arbitrary finitely generated unital subring of R it follows that R is locally ω-residually-Z. It
follows that R is a model of Th∀(Z). Hence R embeds in an ultrapower ZI/D and so R[F ]
is a model of Th∀(Z[F ]). Since Z[F ] embeds in R[F ] every existential sentence true in Z[F ]
is also true in R[F ]. Hence Z[F ] ≡∀ R[F ]. Since F is torsion-free, for each integer n the
following quasi-identity

∀x((xn = 1)→ (x = 1))

holds in F . It follows that for each integer n ≥ 2 the strict universal Horn sentence

∀x((Γ(x) ∧ (xn = 1))→ (x = 1))

holds in Z[F ]. Hence it holds in R[G] and G is torsion-free. We claim that G is a model of
Th∀(F ). Let Θ be a negated primitive sentence true in F . Then Θ is equivalent to a strict
universal Horn sentence

∀x((∧kν=1Γ(xν) ∧ ∧pi=1(ui(x) = 1))→ ((1− w1(x)) · · · (1− wq(x)) = 0))

true in Z[F ]. Hence it is true in R[G] and since Z[G] is contained in R[G] it is true in Z[G]
It follows that Θ is true in G and thus as claimed G is a model of Th∀(F ).

It follows thatG embeds in an ultrapower F J/E of F . Then R[G] embeds into (R[F ])J/E
so R[G] is a model of Th∀(R[F ]). Since R[F ] embeds into R[G] every existential sentence
true in R[F ] is also true in R[G]. It follows that R[F ] ≡∀ R[G]. From Z[F ] ≡∀ R[F ] and
R[F ] ≡∀ R[G] we get by transitivity of ≡∀ that R[G] ≡∀ Z[F ]. This shows that in Theorem
4.3 (1) implies (2) completing the proof.

Theorem 4.3 follows from the statement of Theorem 4.5. To see this, note that since
R[G] satisfies the diagram of Z[F ], then R[G] contains Z[F ]; so R[G] is a model of Th∀(Z[F ])
by Theorem 4.5. So every universal sentence of L2[Z[F ]] true in Th∀Z[F ] is true in R[G].
But since Z[F ] ⊂ R[G], every universal sentence of L2[Z[F ]] true in R[G] must also be true
in Z[F ]. Therefore, R[G] ≡∀ R[F ] and Theorem 4.3 follows. Finally, the proof of Theorem
4.4 goes through verbatim from the proof of Theorem 4.5.
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