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Abstract. Small cancellation groups form an interesting class with many desirable prop-
erties. It is a well-known fact that small cancellation groups are generic; however, all
previously known results of their genericity are asymptotic and provide no information
about “small” group presentations. In this note, we give closed-form formulas for both
lower and upper bounds on the density of small cancellation presentations, and compare
our results with experimental data.

1. Introduction

Informally speaking, a group is a C′(λ) small cancellation group if it is given by a presentation
that satisfies the C′(λ) metric small cancellation condition, i.e. a presentation where no
two relators share a common segment of proportion λ (see Subsection 2.1 for a formal
definition). Small cancellation groups form a class with many desirable algebraic and
algorithmic properties. For example, both the word problem and the conjugacy problem are
uniformly solvable in linear time by Dehn’s algorithm [5]. Following [1, Lemma 3] and [6,
Section 9.B] it is known that small cancellation presentations are “generic” meaning that a
random presentation will most likely present a small cancellation group (see Subsection 2.2).
Furthermore, given a finite presentation one can easily check whether or not it satisfies the
small cancellation property: all one needs to do is to inspect all pairs of relators for a common
segment of critical length. For these reasons small cancellation groups were suggested as a
platform for computation in several cryptographic protocols (see [11, 12, 4, 7]).

The results of [1] and [6] on genericity of small cancellation groups are asymptotic,
stating that a “big enough presentation” will, with overwhelming probability, be a small
cancellation presentation. In particular, neither of these papers specify how big is “big
enough”. For practical applications, such as in cryptography, this is not sufficient. In this
paper we improve the aforementioned results by giving closed-form formulas for both a
lower and an upper bound on the probability that a random presentation satisfies the small
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cancellation condition. Moreover, using these bounds, we are able to derive the asymptotic
bounds on genericity as given in [1, 6].

In Lemma 3.1, we will see that we have a lower bound as follows.

Theorem 1.1. There is a function p6λ (r, `1, `2,m) given by a closed-form formula such that
a presentation chosen uniformly at random from the set of all presentations of the form
〈X | W 〉, where |X| = r, |W | = m and `1 6 |w| 6 `2 for each w ∈ W , is power-free and

satisfies the metric small cancellation condition C′(λ) with probability at least p6λ (r, `1, `2,m).
Moreover, we have

1− p6λ (r, `1, `2,m) 6 8m2r`22(`2 − `1 + 1)(2r − 1)−λ`2−1,

and thus lim`2→∞ p
6
λ (r, `1, `2,m) = 1 for each fixed r > 2, λ and m.

Moreover, from Propositions 3.5 and 4.3 we have an upper bound on the probability of
small cancellation given in Theorem 1.2 below.

Theorem 1.2. There is a function p>λ (r, `,m) given by a closed-form formula such that
a presentation chosen uniformly at random from the set of all presentations of the form
〈X |W 〉, where |X| = r, |W | = m and |w| = ` for all w ∈W , is power-free and satisfies the

metric small cancellation condition C′(λ) with probability at most p>λ (r, `,m). Moreover, for
each m > 1 and r > 2, we have

ln(1/p>λ (r, `,m)) >
1

8
(m− 1)2`(2r − 1)−dλ`e,

that is, p>λ (r, `,m) is not simply the constant function 1. Notice that from Theorem 1.1 we

have lim`→∞ p
>
λ (r, `,m) = 1, and thus

lim
`→∞

ln(1/p>λ (r, `,m)) = 0

for each fixed r > 2, λ and m.

Using the lower bound presented in Section 3.1, we show that the probability of obtaining
a small cancellation presentation is non-trivial even for relatively small parameters, and
compare our results with experimental data.

The organisation of the paper is as follows. In Section 2, we provide the preliminary
notions; in particular, in Subsection 2.1 we recall the formal definition of metric small
cancellation, and in Subsection 2.2 we recall the notion of random groups. In Section 3, we
give the main results of this paper; in particular, Subsection 3.1 derives a lower bound for
the probability of small cancellation in terms of the given parameters of the presentation,
and in Subsection 3.2 we give an upper bound. In Section 4.1, we combine these two
bounds to discuss the limitations on the choice of parameters in regards to maximise the
probability of small cancellation. Finally, in Appendix A we compare our theoretical results
with experimental data; in particular, we provide several heat maps which show how our
bounds differ as we vary the parameters of the presentation.

2. Preliminaries

Given a finite set X = {x1, x2, . . . , xr}, we denote the free group generated by X as F (X).
Further, we write w ∈ F (X) to denote that w is a freely reduced word in

(
X±1

)∗
, that is, w
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does not contain xx−1 or x−1x as a factor for any x ∈ X. Notice that each word w ∈ F (X)
corresponds to a unique element of the free group on the generating set X.

Let w = xε1i1x
ε2
i2
· · ·xεkik with xi1 , xi2 , . . . , xik ∈ X and each εj ∈ {−1, 1}. Then we define

the word length of w as |w|X = k; and |w| when the generating set X is clear from the context.
Further, for each 0 6 d < k = |w| we write w�d to denote the (left) cyclic permutation of w
by a distance of d, that is,

w�d = x
εd+1

id+1
x
εd+2

id+2
· · ·xεkik x

ε1
i1
xε2i2 · · ·x

εd
id
.

We say that a word w is cyclically reduced if all of its cyclic permutations are freely reduced,
or equivalently, if w = xε1i1x

ε2
i2
· · ·xεkik is freely reduced and xε1i1 6= x−εkik

with respect to the free

group F (X).
Let X be a set with r = |X| elements, and W ∈ F (X)m be a list of m words, where

each w ∈W is cyclically reduced; then 〈X |W 〉 is a presentation with r generators and m
relators. Notice that W may contain the same element twice; and further presentations that
differ only by permuting relators are considered to be distinct. For example 〈x, y | x2, y2〉
and 〈x, y | y2, x2〉 are considered to be distinct presentations. For the ease of writing, as
a slight abuse of notation, w ∈ W will denote that there is an i ∈ {1, 2, . . . ,m} such that
πi(W ) = w, where πi : F (X)m → F (X) is the projection onto the i-th component of F (X)m.

2.1. Small Cancellation Presentations. The notation and terminology used in this
section follows that of [8].

We denote the symmetric closure of a finite list of words W ⊂ F (X)∗ as

WS =
{
w�d, (w�d)

−1 ∣∣w ∈W and 0 6 d < |w|
}
.

We say that a word u is a symmetric consequence of a word w if u ∈ (w)S . Further, we
say that W is minimal if there is no proper sublist U such that US = WS . For example,
(aaaa, baba, abab) is not minimal as baba = abab�1, however, the list (aaaa, abab) is minimal.

Let w ∈ F (X), then the maximum size of (w)S is given by 2|w|, that is, |(w)S | 6 2|w|.
Notice that a cyclically reduced word w factors as a proper power, w = un, with n > 1, if
and only if |(w)S | < 2|w|; thus we say that w is power-free if we have |(w)S | = 2|w|.

Let P = 〈X |W 〉 be a presentation where W ∈ F (X)∗ is the list of cyclically reduced
relators. Then, we say that P has metric small cancellation C′(λ) if the list W is minimal,
each word w in the list W is power-free, and any pair of words u,w ∈WS may only have
a short common prefix; in particular, if u = pa, w = pb with p, a, b ∈ F (X) such that
|u| = |p|+ |a| and |w| = |p|+ |b|, then |p| < λ ·min(|u|, |w|).

Furthermore, as Greedinger’s lemma [5] applies to presentations with property C′(1/6),
we will only be interested in the case where λ 6 1/6. From our definition of small cancellation
presentations as given above, a group with property C′(1/6) is torsion-free hyperbolic.

Moreover, in this note we will only be interested in groups with at least two generators.
Thus, in the remainder of this paper we have r = |X| > 2.

2.2. Random groups. In this subsection we recall the notion of random groups and random
presentations. For more details we refer the reader to the survey [9]. Notice that we require
each relater in a presentation to be cyclically reduced.

In this subsection, we fix a generating set X with cardinality r = |X| > 2. As stated
previously, 〈X |W 〉 is a presentation on m relators over X if W ∈ F (X)m where each relator
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w ∈W is cyclically reduced. We write Wm,` for the set of all presentations with m relators,
each with length at most `; and W =

⋃∞
m=1

⋃∞
`=1Wm,` for the set of all presentation.

Let P ⊆ W be a set of presentations, then we say that a randomly chosen presentation
from Wm,` belongs to the set P with probability

pm,`(P) =
|P ∩Wm,`|
|Wm,`|

.

The main two models of randomness in group theory are the few relations model and
the density model. We say that a set of presentations P ⊆ W is generic in the few relation
model if, for each m > 1, we have

lim
`→∞

pm,`(P) = 1.

Furthermore, we say that P is strongly generic if this limit converges exponentially fast.
It was proved in [1, Lemma 3] that the set of all presentations satisfying the metric small
cancellation C′(λ) is strongly generic.

Let some d with 0 6 d 6 1 be given and let fX,d(`) = (2r − 1)d`. Then, we say that a
set of presentations P is generic at density d if

lim
`→∞

pfX,d(`),`(P) = 1

and we say that P is negligible at density d if

lim
`→∞

pfX,d(`),`(P) = 0.

It was proved in [6, Section 9.B] that, for 0 < λ < 1, the set of all presentations satisfying
the metric small cancellation condition C′(λ) is generic at density d if d < λ/2, and negligible
at density d if d > λ/2.

Using the result in Theorem 1.1 we are able to show that small cancellation is strongly
generic with respect to the few relations model, and that small cancellation is generic at
densities d < λ/2. In particular, from Theorem 1.1 we have the upper bound

1− p6λ (r, 0, `,m) 6 8m2r`3(2r − 1)−λ`−1,

where the limit lim`→∞(1 − p6λ (r, 0, `,m)) = 0 converges exponentially fast for each r, m

and λ. Then, we find that the limit lim`→∞ p
6
λ (r, 0, `,m) = 1 converges exponentially fast,

and thus small cancellation is strongly generic. Moreover, we find that, for each 0 6 d < 1,
we also have the bound

1− p6λ (r, 0, `, fX,d(`)) 6 8r`3(2r − 1)(2d−λ)`−1.

Then, we see that lim`→∞(1 − p6λ (r, 0, `, fX,d(d`))) = 0 for each d < λ/2, and thus small
cancellation is generic at density d if d < λ/2.

Another version of the density model was considered in [2], where the authors fix the
length and let the number of generators grow. We will call this model the Ashcroft and
Roney-Dougal density model. Using Theorem 1.1 we immediately get a statement similar to
the positive part of [6, Section 9.B].

Proposition 2.1. The set of power-free finite presentations satisfying property C′(λ) is
generic in the density model of Ashcroft and Roney-Dougal at densities d < λ/2.
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3. Density of Small Cancellation

As was mentioned in the previous section, it is well-known that small cancellation is generic,
i.e. “almost all” presentations satisfy metric small cancellation. However, both [1, Lemma 3]
and [6, Section 9.B] are purely asymptotic statements and neither informs us of what
happens for relatively small parameters. Thus, in this section we give closed-form formulas
for both lower and upper bounds on the probability that a random presentation with given
parameters will have small cancellation.

To simplify notation we write Fr to denote a free group of rank r, that is, Fr = F (X)
where X = {x1, x2, . . . , xr}. Let FR(r, `) denote the number of freely reduced words of
length ` in Fr, then

FR(r, `) = 2r(2r − 1)`−1.

Further, let CR(r, `) denote the number of cyclically reduced words of length ` in Fr, then,
as was shown by Rivin [10, Theorem 1.1],

CR(r, `) = (2r − 1)` + 1 + (r − 1)
(

1 + (−1)`
)
.

Moreover, we write CR(r, `1, `2) to denote the total number of cyclically reduced words of
length `, where `1 6 ` 6 `2, in Fr. That is,

CR(r, `1, `2) =

`2∑
`=`1

CR(r, `).

Notice that, if a presentation P = 〈X |W 〉 does not satisfy small cancellation C′(λ),
then it must satisfy at least one of the following two conditions.

(1) NC1
λ — there is a relator w ∈ W , and two offsets d1, d2 ∈ N with 0 6 d1 < d2 < |w|,

such that w′ = w�d1 and w′′ = w�d2 factor as w′ = xa, w′′ = yb where a, b, x, y ∈ Fr,
x = y±1 and |x| > λ|w|.

(2) NC2
λ — there are two relators w1, w2 ∈ W with cyclic permutations w′1 and w′2, re-

spectively, that factor as w′1 = xa and w′2 = yb where a, b, x, y ∈ Fr, x = y±1 and
|x| > λ ·min(|w1|, |w2|).

We write NC1
λ(r, `) to denote the number of length ` words w ∈ Fr satisfying property

NC1
λ; and NC2

λ(r, `1, `2) to denote the number of word pairs w1, w2 ∈ Fr, each with lengths
between `1 and `2, that satisfying property NC2

λ. Furthermore, we write NC1
λ(r, `1, `2) to

denote the sum
∑`2

`=`1
NC1

λ(r, `); and NC2
λ(r, `) to denote NC2

λ(r, `, `).

Suppose that we choose a presentation P = 〈X |W 〉 uniformly at random from the
class of presentations with |X| = r, |W | = m and `1 6 |w| 6 `2 for each w ∈W . Then, we
denote the probability of P having property C′(λ) as pλ(r, `1, `2,m). In the remainder of
this section, we derive lower and upper bounds for this probability.

3.1. Lower bounds. In the following, we derive a closed-form lower bound p6λ (r, `1, `2,m)
on the probability of a randomly chosen presentation having small cancellation with the
given parameters.

Clearly, we have the lower bound

pλ(r, `1, `2,m) > 1−m · NC1
λ(r, `1, `2)

CR(r, `1, `2)
−
(
m

2

)
· NC2

λ(r, `1, `2)

CR(r, `1, `2)2
. (3.1)
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Thus, to find a lower bound on pλ(r, `1, `2,m), we will derive upper bounds on NC1
λ(r, `)

and NC2
λ(r, `1, `2). In particular, we obtain the bounds given in Lemmas 3.1 and 3.3 below.

Lemma 3.1. We have the upper bound

NC1
λ(r, `) 6 2`(`− 2 dλ`e − 2) FR(r, dλ`e)(2r − 1)`−2dλ`e +

dλ`e∑
k=1

`CR(r, k)(2r − 1)`−dλ`e−k.

Proof. Let w ∈ Fr be a length ` cyclically reduced word chosen uniformly at random. If w
satisfies property NC1

λ, then one of the following two cases must apply.

(1) There is a cyclic permutation w′ = w�d that factors as both w′ = xa and w′ = b1yb2
where a, b1, b2, x, y ∈ Fr with x = y±1, |x| = dλ`e and 1 6 |b1| 6 |x|.

(2) There is a cyclic permutation w′ = w�d that factors as w′ = xayb where a, b, x, y ∈ Fr
with x = y±1, |x| = dλ`e and |a|, |b| > 1.

In case 1 it follows that x = y and that x is of the form

x = (x1x2 · · ·xk)p x1x2 · · ·xq
where k = |b1|, 0 6 q < |b1| and the subword x1x2 · · ·xk is cyclically reduced.

To see this, let k = |b1| and let p, q ∈ N be such that |x| = p · k + q where 0 6 q < k.
Now suppose k = |x|, so that w′ factors as w′ = xyb2; thus x 6= y−1 and x = x1x2 · · ·xk is
cyclically reduced. Suppose instead that 1 6 k < |x|; then x and y must factor as x = x′c
and y = cy′ where x′, y′, c ∈ Fr and c is of length |x| − k. Thus, if x = y−1, then c = c−1

which is not possible as c 6= ε. Hence, x = y and, since x and y overlap, it follows that

x = (x1x2 · · ·xk)p x1x2 · · ·xq
where the subword x1x2 · · ·xk is cyclically reduced.

We are now ready to consider the number of words counted in these two cases. Let us
consider case 1. Suppose that k = |b1|; then there are ` choices for the shift d, CR(r, k)

choices for the subword x = (x1x2 · · ·xk)px1x2 · · ·xq, and (2r − 1)`−dλ`e−k choices for the
remaining letters in the word w. Thus, by summing over all such choices for k, we obtain

dλ`e∑
k=1

`CR(r, k)(2r − 1)`−dλ`e−k

as an upper bound for the number of counted words.
Now consider case 2. There are ` choices for the offset d, 2 · FR(r, dλ`e) choices for the

pair x and y, ` − 2dλ`e − 2 choices for |a|, and (2r − 1)`−2dλ`e choices for the remaining
letters of the word w. Thus, we obtain

2`(`− 2dλ`e − 2) FR(r, dλ`e)(2r − 1)`−2dλ`e

as an upper bound on the number of such words counted in this case.
Thus, by combining our two previous bounds we obtain our result.

Corollary 3.2. We have the upper bounds

NC1
λ(r, `) 6 4r`2(2r − 1)`−λ`−1

and
NC1

λ(r, `1, `2) 6 4r`22(`2 − `1 + 1)(2r − 1)`2−λ`2−1

for each r > 2.
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Proof. Applying the upper bound

CR(r, `) 6 (2r − 1)` + 2r − 1

to the inequality given in Lemma 3.1 we obtain

NC1
λ(r, `) 6 2`(`− 2 dλ`e − 2) · FR(r, dλ`e) · (2r − 1)`−2dλ`e

+

dλ`e∑
k=1

`
[
(2r − 1)k + 2r − 1

]
(2r − 1)`−dλ`e−k.

After some rearrangement, we obtain

NC1
λ(r, `) 6 4r`(`− 2 dλ`e − 2)(2r − 1)`−dλ`e−1 + `(2r − 1)`−dλ`e

dλ`e∑
k=1

[
1 + (2r − 1)1−k

]
.

From this, we can then obtain the upper bound

NC1
λ(r, `) 6 4r`(`− 2 dλ`e − 2)(2r − 1)`−λ`−1 + `(2r − 1)`−λ` (dλ`e+ 2) .

Thus,
NC1

λ(r, `) 6 [4r(`− 2 dλ`e − 2) + (2r − 1)(dλ`e+ 2)] `(2r − 1)`−λ`−1.

From this upper bound, we can then obtain our bound

NC1
λ(r, `) 6 4r`2(2r − 1)`−λ`−1.

Then, using the bound
∑`2

`=`1
`2a` 6 `22(`2 − `1 + 1)a`2 for each a > 1 and 1 6 `1 6 `2, we

obtain our bound on NC1
λ(r, `1, `2).

Lemma 3.3. We have the upper bound

NC2
λ(r, `1, `2) 6

`2∑
j1=`1

`2∑
j2=`1

2j1j2 FR(r, dλ ·min(j1, j2)e)(2r − 1)j1+j2−2dλ·min(j1,j2)e.

Proof. Suppose that we choose two cyclically reduced words v, w ∈ Fr of lengths j1 and
j2, respectively, where `1 6 ji 6 `2 for each ji. Then for the pair of words v, w to satisfy
property NC2

λ there must be cyclic permutations v′ = v�d1 and w′ = w�d2 that factor as
v′ = xa and w′ = yb where a, b, x, y ∈ Fr, x = y±1 and |x| = dλ ·min(j1, j2)e.

Thus, we have j1 possible choices for the offset d1, j2 possible choices for the offset d2,
at most 2 · FR(r, dλ ·min(j1, j2)e) possible choices for the pair of words x and y, at most

(2r − 1)j1−dλ·min(j1,j2)e possible choices for the word a, and at most (2r − 1)j2−dλ·min(j1,j2)e

possible choices for the word b. Hence, we have an upper bound of

2j1j2 FR(r, dλ ·min(j1, j2)e)(2r − 1)j1+j2−2dλ·min(j1,j2)e

for the number of pairs v and w, as before, satisfying property NC2
λ.

Thus, by summing over j1 and j2 from `1 to `2, we obtain our bound.

Corollary 3.4. We have the upper bounds

NC2
λ(r, `) 6 4r`2(2r − 1)2`−λ`−1

and
NC2

λ(r, `1, `2) 6 16r`22(`2 − `1 + 1)(2r − 1)2`2−λ`2−1.
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Proof. From the bound in Lemma 3.3 and FR(r, `) = 2r(2r − 1)`−1 we immediately obtain
the upper bound

NC2
λ(r, `) 6 4r`2(2r − 1)2`−λ`−1.

To derive our second bound, we rewrite the bound in Lemma 3.3 to obtain

NC2
λ(r, `1, `2) 6 2

`2∑
j1=`1

`2∑
j2=j1

2j1j2 FR(r, dλj1e)(2r − 1)j1+j2−2dλj1e.

We then see that we have the upper estimate

NC2
λ(r, `1, `2) 6 8r`22(2r − 1)−1

`2∑
j1=`1

(2r − 1)j1−λj1
`2∑

j2=j1

(2r − 1)j2 .

Since (2r − 1) > 2, we have
∑`2

j2=j1
(2r − 1)j2 6 2(2r − 1)`2 , and thus we have

NC2
λ(r, `1, `2) 6 16r`22(2r − 1)`2−1

`2∑
j1=`1

(2r − 1)j1−λj1 .

Then, using the bound
∑`2

j1=`1
aj1 6 (`2 − `1 + 1)a`2 for each a > 1, we have

NC2
λ(r, `1, `2) 6 16r`22(`2 − `1 + 1)(2r − 1)2`2−λ`2−1

as required.

Using the bounds obtained in this section, we prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Combining the bounds in Lemmas 3.1 and 3.3 with the inequality (3.1)

we obtain a lower bound p6λ (r, `1, `2,m) on the probability of small cancellation. That is, we

have p6λ (r, `1, `2,m) 6 pλ(r, `1, `2,m).
From the upper bound

CR(r, `1, `2) > (2r − 1)`2

and the bounds in Corollaries 3.2 and 3.4, we obtain the bound

1− p6λ (r, `1, `2,m) 6
m

(2r − 1)`2
· 4r`22(`2 − `1 + 1)(2r − 1)`2−λ`2−1

+
m(m− 1)

2(2r − 1)2`2
· 16r`22(`2 − `1 + 1)(2r − 1)2`2−λ`2−1.

Thus, we obtain the upper bound

1− p6λ (r, `1, `2,m) 6 8m2r`22(`2 − `1 + 1)(2r − 1)−λ`2−1

as required.
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3.2. Upper bounds. In this section, we present an upper bound on the probability
pλ(r, `, `,m) in Proposition 3.5 below.

Proposition 3.5. If FR(r, dλ`e) < 2m`, then pλ(r, `, `,m) = 0; otherwise

1

CR(r, `)m

m∏
i=1

min

[
ωi(r, `,m), β(r, `,m) ·

`1∏
k=1

min

(
(2r − 1)dλ`e, αi,k(r, `,m)

)]
is an upper bound for pλ(r, `, `,m) where

ωi(r, `,m) = CR(r, `)− 4(i− 1)`(r − 1)(2r − 1)`−dλ`e−1,

β(r, `,m) = FR(r, `2),

αi,1(r, `,m) = FR(r, dλ`e)− 2(i− 1)` and

αi,k(r, `,m) = FR(r, dλ`e)− 2(i− 1)`− 2
(

(k − 2)dλ`e+ `2 + 1
)

for each i > 1, k > 2 and ` = `1dλ`e+ `2 with `1, `2 ∈ N and 0 6 `2 < dλ`e.

Proof. Let P = 〈X |W 〉 be a presentation such that r = |X|, m = |W | and each word in
the list W is cyclically reduced with length `. We write (w1, w2, . . . , wm) = W for the list of
relators, and the length as ` = `1dλ`e+ `2 where `1, `2 ∈ N and 0 6 `2 < dλ`e. We factor
each relator wi as

wi = bi ai,1 ai,2 ai,3 ai,4 · · · ai,`1 (3.2)

where each |ai,k| = dλ`e and |bi| = `2.

If P satisfies property C′(λ), then each word of the form (w±1i )�d, with 0 6 d < `, has
a distinct length dλ`e prefix. Thus, if FR(r, dλ`e) < 2m`, then pλ(r, `, `,m) = 0 as there
would be no choice for these 2m` distinct prefixes. Thus, in the remainder of this proof, we
will assume that FR(r, dλ`e) > 2m` which also implies that

CR(r, `)− 4m`(r − 1)(2r − 1)`−dλ`e−1 > 0 (3.3)

as each such freely reduced word is the prefix of at least

(2r − 2)(2r − 1)`−dλ`e−1

cyclically reduced words. Thus, all that remains is to establish our upper bound.
In the remainder of this proof, we place an upper bound on the number of choices for

W which result in P having the small cancellation property C′(λ). In particular, we will
describe a process of choosing relators such that the resulting presentation satisfies property
C′(λ).

Suppose that we have already chosen the relators w1, w2, . . . , wi−1 in the presentation.
Then, we derive an upper bound on the number of choices for the relator wi for which the
presentation may satisfy property C′(λ).

For P to satisfy property C′(λ), the length dλ`e prefix of wi must be distinct from each
length dλ`e prefix of (w±1j )�d, where 1 6 j < i and 0 6 d < `, which must themselves be

pairwise distinct. Thus, we find that there are 2(i− 1) prefixes that need to be avoided when

choosing the relator. Moreover, since there are (2r − 2)(2r − 1)`−dλ`e−1 cyclically reduced
words corresponding to each avoided prefix, there are at most

ωi(r, `,m) = CR(r, `)− 4(i− 1)`(r − 1)(2r − 1)`−dλ`e−1

choices for the word wi; and from (3.3) we know wi(r, `,m) is non-negative.
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Now consider the word wi as written in (3.2); we will now place another upper bound
on the number of choices for the word wi by deriving an upper bound on the number of
choices for each of its factors. Firstly, since wi is cyclically reduced, there are no more than
β(r, `,m) = FR(r, `2) choices for the factor bi, and no more than (2r − 1)dλ`e choices for
each factor of the form ai,j . Moreover, since ai,1 must be freely reduced and distinct from

each length dλ`e prefix of some (w±1j )�d, with 1 6 j < i and 0 6 d < `, we find that there
can be at most

αi,1(r, `,m) = FR(r, `)− 2(i− 1)`

choices for the factor ai,1. Now suppose that we have made a choice for the factors
biai,1ai,2 · · · ai,k−1 with k > 2; then the factor ai,k must also avoid each length dλ`e subword
of (biai,1ai,2 · · · ai,k−1)±1. Thus, there are at most

αi,k(r, `,m) = FR(r, dλ`e)− 2(i− 1)`− 2
(

(k − 2)dλ`e+ `2 + 1
)

choices for the factor ai,k.
Hence, after making a choice for the words w1, w2, . . . , wi−1, we find that there are no

more than

min

[
ωi(r, `,m), β(r, `,m) ·

`1∏
k=1

min

(
(2r − 1)dλ`e, αi,k(r, `,m)

)]
choices for the word wi.

Thus, by combining our bounds for each wi we obtain our desired upper bound on the
probability pλ(r, `, `,m).

Corollary 3.6. If FR(r, dλ`e) > 2m`, then

pλ(r, `, `,m) 6
1

CR(r, `)m′

(
CR(r, `)− 4m′`(r − 1)(2r − 1)`−dλ`e−1

)m′
where m′ = bm/2c.
Proof. From Proposition 3.5, we see that, if FR(r, dλ`e) > 2m`, then

pλ(r, `, `,m) 6
m∏
i=1

ωi(r, `,m)

CR(r, `)

where
ωi(r, `,m) = CR(r, `)− 4(i− 1)`(r − 1)(2r − 1)`−dλ`e−1.

Then, since 0 6 ωi(r, `,m) 6 CR(r, `) where 1 6 i 6 m, we see that

pλ(r, `, `,m) 6
m∏

i=m′+1

ωi(r, `,m)

CR(r, `)
.

Notice that ωi(r, `,m) 6 ωm′+1(r, `,m) for each i > m′ + 1. We see that

pλ(r, `, `,m) 6

(
ωm′+1(r, `,m)

CR(r, `)

)m′
.

That is,

pλ(r, `, `,m) 6
1

CR(r, `)m′

(
CR(r, `)− 4m′`(r − 1)(2r − 1)`−dλ`e−1

)m′
as required.
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From Proposition 3.5, given above, we have an upper bound p>λ (r, `,m) such that

p>λ (r, `,m) > pλ(r, `, `,m). At the end of the following section, we will see that this upper
bound is indeed the one described in Theorem 1.2.

4. Finding Limitations on the Parameters

In this section, we derive several conditions for small cancellation to take place with a
specified probability. In particular, we show that, if we wish to have pλ(r, `1, `2,m) > p
for some p < 1, then we can do so by either choosing r or `2 to be sufficiently large, or, if
possible, by choosing m to be sufficiently small. Moreover, we establish an upper bound
on the value of m for small cancellation to occur with a given probability. This section
concludes with a proof of Theorem 1.2.

Proposition 4.1. If

`2 > e ·
ln
(
8rm2

)
− ln(1− p)− ln(2r − 1)

λe ln (2r − 1)− 3
or

r >

(
8m2`22(`2 − `1 + 1)

1− p

)1/λ`2

then we have p 6 p6λ (r, `1, `2,m) 6 pλ(r, `1, `2,m).

Proof. We see that p 6 p6λ (r, `1, `2,m) if 1−p > 1−p6λ (r, `1, `2,m). Then, from Theorem 1.1,
we have the sufficient condition

1− p > 8m2r`32(2r − 1)−λ`2−1.

Then, taking the logarithm of both sides, we find that

ln(1− p) > ln(8m2r) + 3 ln(`2) + (−λ`2 − 1) ln(2r − 1).

Thus, after rearranging and using the bound ln(`2) 6 `2/e, we obtain

`2 > e ·
ln
(
8rm2

)
− ln(1− p)− ln(2r − 1)

λe ln (2r − 1)− 3

as a sufficient condition.
Again, from the bound in Theorem 1.1, we see that, since 2r − 1 > r, we obtain the

sufficient bound
1− p > 8m2`22(`2 − `1 + 1)r−λ`2 .

Then, after rearrangement, we obtain the bound

r >

(
8m2`22(`2 − `1 + 1)

1− p

)1/λ`2

as required.

Proposition 4.2. If m is such that

1 6 m 6

√
(1− p)(2r − 1)1+λ`

8r`2
,

then p 6 p6λ (r, `, `,m) 6 pλ(r, `, `,m).
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Proof. From Theorem 1.1 may derive the sufficient condition

1− p > 8m2r`2(2r − 1)−λ`−1.

Then, after some rearrangement, we obtain the desired result.

From Proposition 3.5, we may derive the following bound on m.

Proposition 4.3. If we have p>λ (r, `,m) > p > 0, then

m 6 1 + 2

√
ln(1/p)(2r − 1)1+dλ`e

2`(r − 1)
.

In particular, the above bound holds if p>λ (r, `,m) > pλ(r, `, `,m) > p > 0.

Proof. Firstly, suppose that FR(r, dλ`e) < 2m`; then pλ(r, `, `,m) = 0 by Proposition 3.5
and thus our statement holds as there would be no such p. In the remainder of this proof,
we suppose that FR(r, dλ`e) > 2m` and thus we have the bound in Proposition 3.5.

Then, from Corollary 3.6, we have

pλ(r, `, `,m) 6
1

CR(r, `)m′

(
CR(r, `)− 4m′`(r − 1)(2r − 1)`−dλ`e−1

)m′
where m′ = bm/2c. After some rearrangement, if pλ(r, `, `,m) > p, then(

1−m′ · 4`(r − 1)(2r − 1)`−dλ`e−1

CR(r, `)

)m′
> p.

Taking the logarithm of both sides we obtain

m′ · ln

(
1−m′ · 4`(r − 1)(2r − 1)`−dλ`e−1

CR(r, `)

)
> ln(p).

We can thus apply the Taylor series for ln(1− x), to obtain

−m′
∞∑
i=1

1

i
·

(
m′ · 4`(r − 1)(2r − 1)`−dλ`e−1

CR(r, `)

)i
> ln(p)

as a necessary condition.
Hence, we can now see that m′ must satisfy(

m′
)2 · 4`(r − 1)(2r − 1)`−dλ`e−1

CR(r, `)
6 ln(1/p),

and thus,

m′ 6

√
CR(r, `) ln(1/p)

4`(r − 1)(2r − 1)`−dλ`e−1
.

Thus, by taking the upper bound CR(r, `) 6 2(2r − 1)`, we see that

m′ 6

√
(2r − 1)1+dλ`e ln(1/p)

2`(r − 1)
.

Since m 6 1 + 2m′, we have our result.

From Proposition 4.3, we may prove Theorem 1.2 as follows.
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Proof of Theorem 1.2. From Proposition 3.5 we have p>λ (r, `,m) > pλ(r, `, `,m). Moreover,
after some rearrangement of the bound obtained in Proposition 4.3, we find that

ln(1/p>λ (r, `,m)) >
1

4
(m− 1)2`

2r − 2

(2r − 1)1−dλ`e
.

Then, since 2(2r − 2) > 2r − 1 for each r > 2, we see that,

ln(1/p>λ (r, `,m)) >
1

8
(m− 1)2`(2r − 1)−dλ`e

for each m > 1 and r > 2.

4.1. Optimal choice of relator length. In a way, an optimal choice of length ` is one for
which there exists an integer k ∈ N such that ` = dk/λe+ 1. For example, if λ = 1/6, then
we would be interested in lengths of the form ` = 6`1 + 1 as they have the property that

pλ(r, 6`1 + 1, 6`1 + 1, m) > pλ(r, 6`1 + 1 + `2, 6`1 + 1 + `2, m)

for each `2 with 0 6 `2 < 6. This property, as we see below, follows from the definition of
small cancellation.

Notice that the length ` > 1 can be uniquely written as ` = `1/λ+ `2 where `1 ∈ N and
`2 ∈ R with 0 < `2 6 1/λ. Then, we see that a presentation, P = 〈X | R〉, with length `
relators fails property C′(λ) if and only if either

(1) there are two words u, v ∈ W and offsets d1, d2, with each 0 6 di < `, such that u�d1
and v�d2 share a length dλ`e = `1 + 1 prefix; or

(2) there is a word w ∈W and two offsets d1, d2, with 0 6 d1 < d2 < `, such that w�d1 and
w�d2 share a length dλ`e = `1 + 1 prefix.

Thus, we see that increasing `2 within the range 0 < `2 6 1/λ can only increase the
probability of W containing such a choice of words and thus decrease the probability of small
cancellation. Hence, with ` in the range dk/λe+ 1 6 ` < d(k + 1)/λe+ 1, the probability,
pλ(r, `, `,m), of small cancellation is maximal at ` = dk/λe+ 1.

Appendix A. Experimental Results

In this appendix we compare our lower and upper bounds, from Section 3.1 and Proposi-
tion 3.5 respectively, with estimates of pλ(r, `, `,m) obtained from computational experiment.
The code used to create this section is provided at [3]. In particular, we present several
heatplots which show how our bounds on pλ(r, `, `,m) compare as we vary the values of
r, ` and m. Each data-point in each heatplot was obtained from a data sample consisting
of at least 35 000 randomly chosen presentations. Within this appendix, unless otherwise
specified, λ = 1/6.

In Figure 1 we fix the number of generators, r, to 20, and compare the probability of
small cancellation, pλ(20, `, `,m), as we vary the number of relators, m, and the length of
such relators, `. Counterintuitively, it appears that the probability of small cancellation is
not monotone non-decreasing with respect to the relator length `. In fact, the probability
appears to be decreasing within ranges of length 6 = 1/λ. A similar phenomenon appears
again in Figure 2, in which the number of relators, m, is fixed to 10 and the probability
pλ(r, `, `, 10) is compared as r and ` are varied. Moreover, we see that, if we instead set
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λ = 1/100, as in Figure 3, then we obtain the same pattern where the probability decreases
within ranges of size 100 = 1/λ. The reason behind this pattern is explained in Section 4.1.

Finally, in Figure 4, we fix the relator length, `, to 20, and compare the probabilities of
small cancellation, pλ(r, 20, 20,m), as we vary the number of generators, r, and relators, m.
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(a) Lower bound from Section 3.1.
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(b) Upper bound from Proposition 3.5.
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(c) Experimental approximation.

Figure 1: Heatmaps giving upper and lower bounds, and an experimental approximation of
pλ(20, `, `,m) as ` and m are varied, with r fixed to be 20.
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(a) Lower bound from Section 3.1.
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(b) Upper bound from Proposition 3.5.
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(c) Experimental approximation.

Figure 2: Heatmaps giving upper and lower bounds, and an experimental approximation of
pλ(r, `, `, 10) as ` and r are varied, with m fixed to be 10.
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(a) Lower bound from Section 3.1.
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(b) Upper bound from Proposition 3.5.
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(c) Experimental approximation.

Figure 3: Heatmaps giving upper and lower bounds, and an experimental approximation of
p1/100(r, `, `, 10) as ` and r are varied, with m fixed to be 10 and λ = 1/100.
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(a) Lower bound from Section 3.1.

6 8 10 12 14 16 18 20

number of generators r

2

20

40

60

80

100

n
u
m
b
er

o
f
re
la
to
rs

m

0.0 0.2 0.4 0.6 0.8 1.0
probability

(b) Upper bound from Proposition 3.5.
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(c) Experimental approximation.

Figure 4: Heatmaps giving upper and lower bounds, and an experimental approximation of
pλ(r, 20, 20,m) as r and m are varied, with ` fixed to be 20.
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matical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005.
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