
journal of Groups, Complexity, Cryptology
Volume 12, Issue 1, 2020, pp. 2:1–2:20
https://gcc.episciences.org/

Submitted Feb. 4, 2020
Published Mar. 20, 2020

A FAULT ATTACK ON THE NIEDERREITER CRYPTOSYSTEM

USING BINARY IRREDUCIBLE GOPPA CODES

JULIAN DANNER AND MARTIN KREUZER

Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany
e-mail address: Julian.Danner@uni-passau.de

Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany
e-mail address: Martin.Kreuzer@uni-passau.de

Abstract. A fault injection framework for the decryption algorithm of the Niederreiter
public-key cryptosystem using binary irreducible Goppa codes and classical decoding
techniques is described. In particular, we obtain low-degree polynomial equations in parts
of the secret key. For the resulting system of polynomial equations, we present an efficient
solving strategy and show how to extend certain solutions to alternative secret keys. We
also provide estimates for the expected number of required fault injections, apply the
framework to state-of-the-art security levels, and propose countermeasures against this
type of fault attack.

1. Introduction

Many established public-key cryptosystems rely on the hardness of the factorization problem
or the discrete logarithm problem. However, their long-term security is not guaranteed, be-
cause they can be broken in polynomial time using sufficiently large quantum-computers [22].
This motivates the need for post-quantum cryptosystems. One of the oldest public-key
cryptosystems is the McEliece cryptosystem [17] which was designed to be used by NASA.
However, partly due to its large public-key sizes, it was never standardized. The security of
the McEliece cryptosystem relies on the hardness of the decoding problem for random linear
codes [19].

The Niederreiter cryptosystem is a variant of the McEliece cryptosystem which offers
some improvements as to the costs of encryption and decryption and requires smaller public-
key sizes [18]. Particularly promising variants are based on the problem of decoding binary
Goppa codes [7].

For some special subclasses of Goppa codes, namely quasi-dyadic and quasi-cyclic Goppa
codes, there exist successful algebraic attacks which take advantage of the particular structure
of the code [9]. But apart from these subclasses, binary (irreducible) Goppa codes still
appear to resist structural attacks. The best known algorithms for decoding arbitrary linear
codes use information set decoding, and their running time is still exponential [16].

Key words and phrases: Niederreiter cryptosystem, binary Goppa code, side-channel analysis, fault attack.

Journal of GROUPS,
COMPLEXITY, CRYPTOLOGY

c© Julian Danner and Martin Kreuzer
CC© Creative Commons

https://gcc.episciences.org/
http://creativecommons.org/about/licenses

2:2 Julian Danner and Martin Kreuzer Vol. 12:1

Structural attacks on the Niederreiter and McEliece cryptosystems have been widely
researched. However, their side-channel analysis is not quite as advanced. In general, any
additional source of information that can be derived from a specific hardware or software
implementation of a cryptosystem, or even its execution, may be considered a side-channel.
Clearly, side-channel attacks have to be measured by their practical feasibility. Passive
side-channel analysis is frequently based on power-analysis of hardware devices or timings of
the execution of certain parts of the encryption or decryption algorithms.

In this paper we consider a type of active side-channel attacks called fault attacks. In
particular, we assume that we are able to inject an error into the usual flow of the algorithms
of the cryptosystem by corrupting the contents of specific memory cells at a particular
moment. Common methods of achieving such a fault injection are manipulations of the
power supply and the usage of pulsed laser or ion beams. The usability of a fault attack
depends chiefly on the fault model which describes the required physical capabilities of the
attacker.

For the Niederreiter and McEliece cryptosystems, there exist successful passive side-
channel attacks [2, 21, 23, 24] which exploit traditional side-channels, such as timing and
power consumption attacks. For active side-channel attacks such as fault attacks, much less
seems to be known. We found only the article [6] which analyses the sensitivity of these
cryptosystems to fault injections in the encryption and key generation algorithms.

However, the most natural target for a fault attack at a public-key cryptosystem is the
decryption algorithm, because it uses the secret key whose knowledge would allow us to
completely break the system. In fact, it suffices to find an alternative key, i.e., a key which
also allows us to decrypt ciphertexts. The current paper is a first attempt at constructing
such fault attacks. Our target class of cryptosystems are Niederreiter cryptosystems based
on binary irreducible Goppa codes. We call them briefly BIG-N cryptosystems. The attack
is based on the following fault model:

(1) The decryption algorithm follows the standard pattern: first the error locator polynomial
is computed, and then it is evaluated at the support elements to deduce the plaintext.

(2) The decryption algorithm not only reconstructs plaintext units of weight t , the designed
distance, but also illegal plaintexts p , i.e., plaintexts of weight 1 ≤ wt(p) < t .

(3) After the error-locator polynomial has been computed, we are able to inject a uniformly
random fault into a chosen coefficient of this polynomial, i.e., we are able to replace it
by a random bit-tuple.

Moreover, we assume that we are able to repeat these injections hundreds or even several
thousand times. The resulting BIG-N fault attack breaks all state-of-the-art security
levels [4], even “long term” secure ones, within minutes. Consequently, we suggest explicit
countermeasures for hardware- or software-implementations of BIG-N cryptosystems.

Feasibility and Applicability. Let us briefly discuss the practical applicability and
relevance of the new fault attack. As we shall see in Section 7, for carrying out the actual
fault injections, we need to hit the register holding a certain 10-13 bit wide coefficient at
a specified point in time. Using modern equipment, this is a mild requirement (see for
instance [12] and [5]).

Thus it seems more pertinent to discuss the vulnerability of current cryptographic BIG-N
schemes to the proposed attacks. Looking through the NIST Post-Quantum Standardization
candidates, there are three original submissions based on Goppa codes: “BIG Quake” which
is vulnerable to our attack, “Classic McEliece”, and “NTS-KEM”. The latter two are actually

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:3

key exchange systems where the key cannot be chosen freely, and for the random vector
a hash value is transmitted. This is clearly a setting in which the current attack does
not apply directly. However, the reference implementation [27] for the BIG-N part of the
schemes is not protected against the attack. Furthermore, the other published reference
implementations [10] and [11] of the BIG-N cryptosystem use constant weight encoders and
decoders whose standard implementation is also vulnerable. Thus, although it may not be
very difficult to defend against, apparently all current implementations and applications of
the BIG-N cryptosystem are vulnerable to the BIG-N fault attack.

Contents. Let us describe the structure of the paper in more detail. After recalling
some basic facts about binary Goppa codes and BIG-N cryptosystems in Sections 2 and 3,
we present a BIG-N fault attack framework in Section 4. In particular, we analyze the
assumptions underlying the attack carefully and propose countermeasures. Then we introduce
the general framework for the fault attack: we assume that we are able to replace the error
locator polynomial σe(x) by an erroneous one of the form σ̃e(x) = εxd + σe(x) where
ε ∈ F2m is distributed uniformly at random and d is the chosen degree under attack.

In Section 5 we analyze the resulting equations for the components of the support vector
α = (α1, . . . , αn) of the binary Goppa code in two particular cases: we attack the constant
and the quadratic coefficient of σe(x). From a successful constant injection we derive a
linear equation for the components of α , and from a successful quadratic injection we get a
linear or a quadratic equation. However, this typically requires a sequence of injections until
we succeed in obtaining an erroneously deciphered word of weight two.

The next steps are taken in Section 6 where we combine the acquired linear and quadratic
equations into a fault equation system and then carry out the actual BIG-N fault attack in
three steps: Firstly, we solve the fault equation system and get a set of support candidates.
Secondly, using the fact that it suffices to find the support and the Goppa polynomial of
a larger binary Goppa code containing the publicly known one, we determine a support
candidate which can be extended. Finally, we use this alternative secret key to break the
given BIG-N cryptosystem.

In the final section we offer some experiments and timings for the BIG-N fault attack.
In particular, we provide estimates for the average numbers of constant and quadratic fault
injections needed to succeed. Moreover, we collect the timings for breaking various security
levels, ranging from one minute for “short term” 60-bit security to about 25 minutes for
“long term” 266-bit security.

2. Binary Goppa Codes

For starters, let us recall the definition of a binary Goppa code. By F2m we denote
the finite field having 2m elements. We also fix the following notation: given a tuple
c = (c1, . . . , cn) ∈ Fn2 , we let Ic := {i ∈ {1, . . . , n} | ci = 1} .

Definition 2.1. Let m, t, n ∈ N+ such that mt < n ≤ 2m .

(a) A tuple α = (α1, . . . , αn) ∈ Fn2m such that αi 6= αj for i 6= j will be called a support
tuple.

(b) A polynomial g ∈ F2m [x] with deg(g) = t and g(αi) 6= 0 for i ∈ {1, . . . , n} is called a
Goppa polynomial for the support tuple α .

2:4 Julian Danner and Martin Kreuzer Vol. 12:1

(c) The (binary) Goppa code with the generating pair (α, g) is given by

Γ(α, g) = {c ∈ Fn2 |
∑
i∈Ic

(x− αi)−1 = 0 in F2m [x]/〈g〉}

In particular, if g is an irreducible polynomial, then Γ(α, g) is called an irreducible
Goppa code.

Remark 2.2. For a Goppa code C = Γ(α, g) and for c = (c1, . . . , cn) ∈ Fn2 , we have

c ∈ C ⇔
∑
i∈Ic

(x− αi)−1 = 0 (in F2m [x]/〈g〉)

⇔ g |
∑
i∈Ic

∏
j∈Ic\{i}

(x− αj) (in F2m [x])

Remark 2.3. Given a Goppa code C = Γ(α, g) it is well-known that a parity-check matrix
H ∈ Matmt×n(F2) of C can be obtained from the matrix

H ′ =


β1 · · · βn
α1β1 · · · αnβn

...
...

αt−11 β1 · · · αt−1n βn

 ∈ Matt,n(F2m)

where βi = g(αi)
−1 for i = 1, . . . , n , by replacing each entry of H ′ by a column of m bits

that arise by fixing an F2 -basis of F2m .

From here on, let C = Γ(α, g) be a binary Goppa code with parameters m, t, n ∈ N+

as described above, and let H ∈ Matmt,n(F2) be a parity-check matrix of C . For c̃ ∈ Fn2 ,
we call sc̃ = c̃Htr ∈ Fmt2 the syndrome of c̃ with respect to H . Then we have c̃ ∈ C if
and only if c̃Htr = 0.

It is known that dimC ≥ n−mt and that the minimal distance of C satisfies dmin(C) ≥ t .
If C is irreducible, we even have C = Γ(α, g2) and dmin(C) ≥ 2t . Hence, in general, up
to t

2 errors can be corrected, and if C is irreducible, even up to t errors can be corrected
uniquely.

Since we are going to use it extensively, let us briefly recall the classical syndrome
decoding method for binary Goppa codes.

Remark 2.4. (Sydrome Decoding for Goppa Codes)
Consider a received word c̃ = c + e ∈ Fn2 with c ∈ C and e ∈ Fn2 . Then we define the
error-locator polynomial by

σe(x) =
∏
i∈Ie

(x− αi) ∈ F2m [x]

and the syndrome polynomial of c̃ = (c̃1, . . . , c̃n) ∈ Fn2 by

sc̃(x) =
n∑
i=1

c̃i
g(αi)

g(x)−g(αi)
x−αi

∈ F2m [x]

Then we have se(x) ≡ sc̃(x) mod g(x), and we obtain the key equation

σe(x) · sc̃(x) ≡ σ′e(x) mod g(x)

Let us write g(x) = gtx
t + · · · + g1x + g0 with g0, . . . , gt ∈ F2m . Using the same F2 -

basis of F2m as in Remark 2.3, we combine sequences of m entries in the syndrome

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:5

sc̃ = c̃Htr = eHtr ∈ Fmt2 and get ŝ ∈ Ft2m . Now the coefficients of the syndrome polynomial
sc̃(x) can be computed by a simple multiplication of ŝ ∈ Ft2m with the matrix

Sg =


gt gt−1 · · · g1

. . .
. . .

...
gt gt−1

gt

 ∈ GLt(F2m)

Hence it is sufficient to solve the key equation for the error-locator polynomial σe(x).
Then the zeros of σe(x) determine the error vector e ∈ Fn2 via the oberservation that, for
i ∈ {1, . . . , n} , we have ei = 1 if and only if σe(αi) = 0. Finally, we decode c̃ to c = c̃+ e .

The main task in this method is to solve the key equation. This can be done in several
ways, for instance explicitly using the Sugiyama-Algorithm [25], or implicitly using the
Berlekamp-Massey Algorithm [3, 15]. As shown in [8], one may consider these two algorithms
as essentially equivalent. For a binary irreducible Goppa code C , up to t errors can be
corrected using the Patterson Algorithm [20] which also uses the key equation to obtain
the error-locator polynomial. Independently of the chosen method, decoding consists of the
following three basic steps.

Algorithm 2.5. (The Syndrome Decoding Algorithm)
Let C = Γ(α, g) ⊆ Fn2 be a binary Goppa code, where α = (α1, . . . , αn) ∈ Fn2m and
g ∈ F2m [x] , and let t = deg(g). Let H ∈ Matmt×n(F2) be a parity check matrix of C
obtained as in Remark 2.3, and let sc̃ = c̃Htr 6= 0 be the syndrome of a given received word
c̃ ∈ Fn \ C . We assume that c̃ is of the form c̃ = c+ e with c ∈ C and e ∈ Fn2 such that
#Ie ≤ t

2 (or #Ie ≤ t , if C is irreducible). Then we compute e ∈ Fn2 from sc̃ using the
following steps.

(1) Compute the syndrome polynomial sc̃(x) ∈ F2m [x] from sc̃ .
(2) Compute the error-locator polynomial σe(x) by solving the key equation (explicitly or

implicitly), e.g., via one of the cited algorithms.
(3) For i = 1, . . . , n , let ei = 1 if σe(αi) = 0 and ei = 0 otherwise. Return e = (e1, . . . , en) ∈

Fn2 and stop.

3. BIG-N Cryptosystems

In this section we introduce Niederreiter cryptosystems using binary irreducible Goppa codes
(see [18]) and recall some of their basic properties. Subsequently, we write Wn,t for the set
of all elements v ∈ Fn2 of Hamming weight t , i.e., such that wt(v) = #Iv = t .

Definition 3.1. (BIG-N Cryptosystems)
A Niederreiter cryptosystem using a binary irreducible Goppa code C (BIG-N
cryptosystem) with parameters m, t, n ∈ N+ such that mt < n ≤ 2m is represented by a
tuple (Ksec,Kpub,P, C, encr, decr) consisting of the following parts.

(a) The tuple Ksec = (S,H, P, α, g), where H ∈ Matmt×n(F2) is a parity check matrix of
the irreducible Goppa code C = Γ(α, g) with deg(g) = t and dimension n−mt , where
P ∈ Matn(F2) is a permutation matrix, and where S ∈ GLmt(F2), is called the secret
key.

2:6 Julian Danner and Martin Kreuzer Vol. 12:1

(b) The tuple Kpub = (m, t, n,Hpub), where m, t, n are the parameters of C , and where
Hpub = S · H · P ∈ Matmt,n(F2), is called the public key. The matrix Hpub is also
called the public parity check matrix.

(c) The set P = Wn,t is called the plaintext space, and an element p ∈ P is called a
plaintext unit.

(d) The set C = {pHtr
pub | p ∈ P} is called the ciphertext space, and an element c ∈ C is

called a ciphertext unit.
(e) The map encr : P −→ C given by encr(p) = pHtr

pub is called the encryption map.

(f) The map decr : C −→ P given by decr(c) = γ(c · (Str)−1) · (P tr)−1 is called the
decryption map. Here the map γ : Fmt2 −→ Fn2 satisfies γ(eHtr) = e for all e ∈Wn,t

and is a syndrome decoding algorithm which corrects up to t errors.

In particular, notice that we have decr(encr(p)) = p for all p ∈ P . Indeed, for a plaintext
unit p ∈ P and its ciphertext c = encr(p) = pHtr

pub , we have wt(pP tr) = wt(p) = t , and

therefore γ(c (Str)−1) = γ((pP tr)Htr) = pP tr . Hence we get decr(c) = p , as claimed.
A BIG-N cryptosystem is a public-key cryptosystem, i.e., the encryption map encr can

be computed solely using the public key Kpub , but the application of the decryption map decr
requires the knowledge of the secret key Ksec . The cryptosystem (Ksec,Kpub,P, C, encr,decr)
is considered broken if one can efficiently compute a fast alternative decryption map
decr′ : C −→ P which satisfies decr′(encr(p)) = p for all p ∈ P . If, for an alternative
decryption map decr′ , there exists a secret key K ′sec such that (K ′sec,Kpub,P, C, encr,decr′)
is a BIG-N cryptosystem, then K ′sec is called an alternative secret key.

In the following we let m, t, n ∈ N+ such that mt < n ≤ 2m , we let C = Γ(α, g) be an
irreducible Goppa code with these parameters, and we let (Kpub,Ksec,P, C, encr,decr) be a
BIG-N cryptosystem using C . Moreover, we fix an F2 -basis of F2m and use it to convert
elements of F2m to m-tuples of bits and vice versa.

Remark 3.2. (Simplified BIG-N Cryptosystems)
In the above setting, let H ∈ Matmt,n(F2) be the parity check matrix for C obtained as in
Remark 2.3, and let P ∈ Matn(F2) be the permutation matrix contained in the secret key.

Then we define α̃ := α · P ∈ Fn2m and C̃ = Γ(α̃, g). Clearly, also C̃ is a binary irreducible

Goppa code, and the matrix H̃ := H ·P is a parity check matrix for C̃ which has the shape
described in Remark 2.3.

Since the public parity check matrix satisfies Hpub = S · H̃ , an alternative secret key

for the original cryptosystem is given by (S, H̃, In, α̃, g), where In is the identity matrix

of size n . Consequently, we may use the Goppa code C̃ instead of C and get rid of the
permutation matrix P as part of the secret key.

From here on we use secret keys of the form Ksec = (S,H, α, g) and simplify all
BIG-N cryptosystems accordingly. Notice that the code defined by the public parity check
matrix Hpub of the simplified cryptosystem is now equal to C and continues to be publicly
known.

In view of the preceding section, we know that a BIG-N cryptosystem is broken if an
efficient t-error correcting algorithm is found for the Goppa code C . The next algorithm
shows that this requirement can be weakened even further.

Algorithm 3.3. (An Alternative Decryption Algorithm)
Consider a BIG-N cryptosystem (Ksec,Kpub,P, C, encr,decr) using the Goppa code C =
Γ(α, g) and having the public key Kpub = (m, t, n,Hpub). Assume that there exist a support

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:7

tuple α̃ ∈ Fn2m and a Goppa polynomial g̃ ∈ F2m [x] for α̃ such that t̃ := deg(g̃) ≥ 2t

and C ⊆ C̃ := Γ(α̃, g̃). Given a ciphertext unit c ∈ C , consider the following sequence of
instructions.

(1) Compute a parity check matrix H̃ ∈ Matmt̃,n(F2) for C̃ as in Remark 2.3.

(2) Compute the matrix S̃ ∈ Matmt̃,mt(F2) such that S̃ ·Hpub = H̃ .

(3) Compute c̃ = c S̃tr and apply the syndrome decoding algorithm of C̃ to c̃ . Return the
resulting tuple p .

This is an algorithm which computes a plaintext unit p ∈ P such that we have encr(p) = c .

Proof. First notice that C ⊆ C̃⊥ implies C̃⊥ ⊆ C⊥ . Since the rows of H̃ generate C̃⊥

and the rows of Hpub generate C⊥ , it follows that there exists a matrix S̃ ∈ Matmt̃,mt(F2)

such that S̃ · Hpub = H̃ , and this matrix can computed in step (2). Furthermore, the
input for Algorithm 2.5 in step (3) is correct, because c = encr(p) for some p ∈ P , and

therefore c̃ = c S̃tr = pHtr
pubS̃

tr = p H̃tr is a syndrome of weight wt(p) = t with respect

to H̃ . Consequently, the algorithm can be executed.
Its finiteness is clear. Its correctness follows from the fact that Algorithm 2.5 corrects

up to deg(g̃)
2 = t̃

2 ≥ t = wt(p) errors, and hence determines p ∈ P correctly.

In view of this algorithm, it is clear that a BIG-N cryptosystem using the code C =
Γ(α, g) is broken if a generating pair (α̃, g̃) for a binary Goppa code is found such that

deg(g̃) ≥ 2t and such that C ⊆ C̃ = Γ(α̃, g̃). Therefore such a pair (α̃, g̃) will be called an
alternative secret pair.

4. The BIG-N Fault Injection Framework

In this section we let m, t, n ∈ N+ such that mt < n ≤ 2m , we let C = Γ(α, g) be a binary
irreducible Goppa code with these parameters, and we let (Kpub,Ksec,P, C, encr,decr) be a
BIG-N cryptosystem using C . Moreover, we write Kpub = (m, t, n,Hpub) for the public key
and Ksec = (S,H, α, g) for the secret key. Using Remark 3.2, we assume that Hpub = S ·H .
Recall that we let Ip = {i ∈ {1, . . . , n} | pi = 1} for p = (p1, . . . , pn) ∈ Fn2 .

In order to mount the proposed fault attack, we require that the implementation of the
decryption map decr satisfies three assumptions. They are motivated by the following usual
implementation which is based on the classical syndrome decoding method of Algorithm 2.5.

Algorithm 4.1. (Implementing the Decryption Map decr)
Input: a ciphertext unit c = encr(p) ∈ C , the secret key Ksec = (S,H, α, g)
Output: a plaintext unit p ∈ P

1: Compute the syndrome s = c(Str)−1 ∈ Fmt2 with respect to H .
2: Compute the syndrome polynomial sp(x).
3: Compute the error-locator polynomial σp(x).
4: Determine p = (p1, . . . , pn) ∈ P by setting pi = 1 if σp(αi) = 0 and pi = 0 otherwise.
5: return p

In view of this algorithm, the following assumption seems natural.

Assumption 4.2. The implementation of the decryption map decr makes use of the error-
locator polynomial in such a way that it is first computed explicitly, then evaluated at the
support elements, and finally the resulting plaintext unit is returned.

2:8 Julian Danner and Martin Kreuzer Vol. 12:1

Next we let p ∈ Fn2 with 0 < wt(p) < t and c = pHtr
pub . Since Algorithm 4.1 is based

on the Syndrome Decoding Algorithm 2.5, and since syndrome decoding corrects up to t
errors, applying this algorithm to c will correctly return p . Hence we make the following
assumption.

Assumption 4.3. Let p ∈ Fn2 with 0 < wt(p) ≤ t, and let c = pHtr
pub . If we apply the

decryption map decr to c, it returns p.

In order to be able to inject a fault into the decryption process, we require one final
assumption.

Assumption 4.4. Let d ∈ N with d < t , let p ∈ Fn2 with 0 < wt(p) ≤ t , and let c = pHtr
pub .

After the error-locator polynomial σp(x) has been computed during the decryption process
of c , we assume that we can inject a uniformly random fault into the d-th coefficient of σp(x) .

In other words, we assume that we may replace σp(x) by a polynomial σ̃p(x) = εxd + σp(x)
where ε ∈ F2m is chosen uniformly at random.

As a testimony to the applicability of these assumptions, consider the hardware imple-
mentation described in [27]. It follows the steps of Algorithm 4.1, and after σp(x) has been
computed, this polynomial is transferred to the evaluation module by sending m(t+ 1) bits,
where each m-bit subtuple represents one of coefficients of σp(x). This transfer process
is suited for an injection of a (uniformly distributed) random error ε ∈ F2m into the d-th
coefficient of σp(x). From a hardware point of view, it corresponds to randomly changing
the state of m chosen consecutive bits.

Every implementation of the decryption map that satisfies these assumptions is vulnerable
to the following fault injection framework.

Algorithm 4.5. (The BIG-N Fault Injection Framework)
For a BIG-N cryptosystem (Ksec,Kpub, C,P, encr, decr) as above, assume that the imple-
mentation of the decryption map decr satisfies Assumptions 4.2, 4.3, and 4.4. Choose a
word p ∈ Fn2 with 0 < wt(p) ≤ t and a number d ∈ N with d < t . Then consider the
following sequence of instructions.

(1) Compute c = pHtr
pub ∈ Fmt2 .

(2) Start the decryption algorithm decr with input c ∈ Fmt2 and inject a uniformly random
fault ε ∈ F2m in the d-th coefficient of σp(x) such that σ̃p(x) = εxd+σp(x) is evaluated
instead of σp(x).

(3) Return p̃ ∈ Fn2 , the output of the faulty decryption of step (2).

This is an algorithm which returns a tuple p̃ = (p̃1, . . . , p̃n) ∈ Fn2 such that, for i ∈ {1, . . . , n} ,
we have p̃i = 1 if and only if εαdi +

∏
j∈Ip(αi − αj) = 0.

Consequently, every component p̃i = 1 yields a polynomial equation in F2m [x0, . . . , xn]
which is satisfied for (ε, α1, . . . , αn)

Proof. By Assumption 4.3, the decryption algorithm is correct for all syndromes c = pHtr
pub

with p ∈ Fn2 and 0 < wt(p) ≤ t . In combination with Assumption 4.2, this means that
in the course of the decryption algorithm, the error-locator polynomial σp(x) is computed
correctly. By Assumption 4.2, the output p̃ = (p̃1, . . . , p̃n) ∈ Fn2 satisfies p̃i = 1 if and only
if σ̃p(αi) = 0. Since we have σ̃p(x) = εxd + σp(x) and σp(x) =

∏
i∈Ip(x − αi), the claim

follows.

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:9

In the setting of this framework, we call the triple (p, d, p̃) a BIG-N fault injection
in degree d . We also say that this injection uses the fault ε . The possibility to perform
BIG-N fault injections can be prevented as follows.

Remark 4.6. (Countermeasures)
Let (p, d, p̃) be a BIG-N fault injection.

(a) The output of the decryption map of a BIG-N cryptosystem is an n-bit tuple of weight t .
In general, for a BIG-N fault injection (p, d, p̃), the output p̃ will have weight ≤ t . Thus
checking the weight of p̃ discovers most fault injections.

(b) A further way to detect fault injections is to re-encrypt the output p̃ . If p̃ 6= p , we will
get p̃ Htr

pub 6= c .

The next proposition collects some observations on BIG-N fault injections.

Proposition 4.7. Let (p, d, p̃) be a BIG-N fault injection which uses the fault ε ∈ F2m ,
and let σ̃p(x) = εxd + σp(x). Then the following claims hold.

(a) If wt(p̃) > wt(p) then ε 6= 0.
(b) We have either p = p̃ or #(Ip ∩ Ip̃) = 1.
(c) If ε 6= 0 then Ip ∩ Ip̃ = {i} is equivalent to i ∈ Ip , αi = 0, and d > 0.

Proof. First we prove (a). Assuming that wt(p̃) > wt(p), we have to show ε 6= 0. Considering
the way in which p̃ is determined by the zeros of σ̃p(x), we see that deg(σ̃p(x)) ≥ wt(p̃).
Since wt(p) = deg(σp(x)), we get deg(σ̃p(x)) > deg(σp(x)), and hence ε 6= 0.

To show (b), we consider two cases. In the case ε = 0, we clearly have Ip = Ip̃ and
thus p = p̃ . It remains to examine the case ε 6= 0. For a contradiction, assume that
#(Ip ∩ Ip̃) ≥ 2. Let j1, j2 ∈ Ip ∩ Ip̃ with j1 6= j2 . Then εxd = σ̃p(x)− σp(x) has the distinct

zeros αj1 and αj2 . This is a contradiction to the fact that εxd has no two distinct zeros.
Consequently, we get #(Ip ∩ Ip̃) ≤ 1.

Finally, we prove (c). Let ε 6= 0. To show the implication “⇒”, we note that αi is
a zero of σ̃p(x) and of σp(x). Hence αi is a zero of σ̃p(x) − σp(x) = εxd . As ε 6= 0, this
implies αi = 0 and d > 0.

Now we show the reverse implication “⇐”. Since αi = 0 is a zero of σp(x), we have

x | σp(x), and thus x | εxd + σp(x) = σ̃p(x). Consequently, αi is a zero of σ̃p(x), and we
get i ∈ Ip̃ . Thus we have i ∈ Ip ∩ Ip̃ , and (b) says that either p = p̃ or Ip ∩ Ip̃ = {i} . In
the second case, we are already done. So, assume that p = p̃ . Then we deduce that, for
all j ∈ Ip = Ip̃ , the element αj is a zero of both σp(x) and σ̃p(x). Hence αj is a zero of

σ̃p(x)− σp(x) = εxd for all j ∈ Ip = Ip̃ . Thus we have αj = 0 for all j ∈ Ip , and since the
elements α1, . . . , αn are pairwise distinct, we must have #(Ip ∩ Ip̃) = 1, as claimed.

From a BIG-N fault injection one can derive polynomial equations in the unknown
support α , as the next remark explains.

Remark 4.8. Let (p, d, p̃) be a BIG-N fault injection using the fault ε ∈ F2m , and assume
that wt(p̃) ≥ 2. Choosing i, j ∈ Ip̃ with i 6= j , we obtain

0 = ε αdiα
d
j +

∏
k∈Ip

(αi − αk)αdj = ε αdiα
d
j +

∏
k∈Ip

(αj − αk)αdi

Therefore the tuple (α1, . . . , αn) is a zero of the polynomial

xdi
∏
k∈Ip

(xj − xk) − xdj
∏
k∈Ip

(xi − xk)

2:10 Julian Danner and Martin Kreuzer Vol. 12:1

in F2m [x1, . . . , xn] . Of course, using multiple BIG-N fault injections, we can generate a
polynomial system which has (α1, . . . , αn) as one of its F2m -rational solutions.

Notice that each polynomial has degree d + wt(p) and involves either wt(p) + 1 or

wt(p) + 2 indeterminates. Moreover, from one fault injection we obtain
(
wt(p̃)

2

)
polynomials,

and we have wt(p̃) ≤ deg(σ̃p) ≤ max(wt(p), d). Therefore we should choose both d and wt(p)
small, so that the polynomial system contains only small degree polynomials in relatively
few indeterminates. But note that then only a few equations can be obtained from each
injection, and hence we have to perform a large number of fault injections in order to obtain
a polynomial system that involves all indeterminates.

In the next section we present two specific BIG-N fault injection classes which allow us
to obtain equations of degree even lower than d+ wt(p). In particular, we will see how to
generate linear and quadratic equations in merely a few indeterminates.

5. Constant and Quadratic Fault Injection Sequences

In this section we construct algorithms which repeatedly perform BIG-N fault injections
until we obtain a linear or quadratic polynomial satisfied by the support tuple (α1, . . . , αn).
We continue to use the setting of the preceding section: let (Ksec,Kpub, C,P, encr,decr) be a
BIG-N cryptosystem, and assume that the decryption map decr satisfies Assumptions 4.2, 4.3,
and 4.4. For i = 1, . . . , n , let e(i) denote the i-th standard basis vector of Fn2 . Subsequently,
we are mainly interested in the following types of fault injections.

Definition 5.1. Let (p, d, p̃) be a BIG-N fault injection.

(a) The fault injection (p, d, p̃) is called a constant injection if d = 0 and we have

p = e(i1) + e(i2) ∈ Fn2 for some i1, i2 ∈ {1, . . . , n} such that i1 6= i2 .
(d) The fault injection (p, d, p̃) is called a quadratic injection if d = 2 and we have

p = e(i) ∈ Fn2 for some i ∈ {1, . . . , n} .
(c) A constant or quadratic injection (p, d, p̃) is called successful if we have wt(p̃) = 2.

The term successful is adequately chosen, as the following proposition shows.

Proposition 5.2. Let (p, d, p̃) be a BIG-N fault injection.

(a) Suppose that a constant injection with p = e(i1) + e(i2) , where i1, i2 ∈ {1, . . . , n} and
i1 6= i2 , is successful. Let Ip̃ = {j1, j2}. Then we have

αi1 + αi2 = αj1 + αj2

(b) Suppose that a quadratic fault injection with p = e(i) for some i ∈ {1, . . . , n} is successful.
Let Ip̃ = {j1, j2}. Then we have

αiαj1 + αiαj2 + αj1αj2 = 0

If, additionally, αi 6= 0, then we also have αj1 6= 0 and αj2 6= 0.

Proof. First we show (a). Let ε ∈ F2m be the fault that is used by the fault injection
(p, d, p̃). By definition of the error-locator polynomial, we have σp(x) = (x− αi1)(x− αi2).
Then σ̃p(x) = σp(x) + ε , and for i ∈ {1, . . . , n} we have p̃i = 1 if and only if σ̃p(αi) = 0.
Using j1, j2 ∈ Ip̃ , we get σ̃p(αj1) = σ̃p(αj2) = 0. Then deg(σ̃p) = 2 and j1 6= j2 yield
σ̃p(x) = (x− αj1)(x− αj2). Thus σ̃p(x) = σp(x) + ε implies

x2 + (αi1 + αi2)x+ (αi1αi2 + ε) = x2 + (αj1 + αj2)x+ αj1αj2

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:11

Comparing coefficients yields αi1 + αi2 = αj1 + αj2 , as claimed.

Next we prove (b). Let i ∈ {1, . . . , n} and p = e(i) . By definition, the tuple (p, 2, p̃) is a
BIG-N fault injection. Let ε ∈ F2m be the fault used by this fault injection. By definition of
the error-locator polynomial, we have σp(x) = x− αi . Hence we have σ̃p(x) = εx2 + x− αi .
Notice that, for i ∈ {1, . . . , n} , we have p̃i = 1 if and only if σ̃p(αi) = 0. Since j1, j2 ∈ Ip̃ , we
get σ̃p(αj1) = σ̃p(αj2) = 0, and therefore j1 6= j2 implies εx2 + x−αi = ε(x−αj1)(x−αj2).
Comparing coefficients yields 1 = −ε(αj1 + αj2) and −αi = εαj1αj2 . By multiplying the
second equation with −(αj1 + αj2), we get

(αj1 + αj2) · αi = (−ε(αj1 + αj2))αj1αj2 = −αj1αj2
and the first claim of (b) follows.

To show the second claim, let αi 6= 0. We want to prove that αj1 6= 0 and αj2 6= 0. For
a contradiction, assume that αj1 = 0 or αj2 = 0. In both cases we have αj1αj2 = 0, and
therefore the above equation yields −αi = εαj1αj2 = 0, in contradiction to the fact that
αi 6= 0. Hence we have αj1 6= 0 and αj2 6= 0.

Part (a) of this proposition can now be exploited for a fault injection sequence algorithm
which finds a linear equation for (α1, . . . , αn), if it terminates.

Algorithm 5.3. (A Constant Fault Injection Sequence)
Given a BIG-N cryptosystem (Ksec,Kpub, C,P, encr,decr) as above and two distinct indices
i1, i2 ∈ {1, . . . , n} , consider the following instructions.

(1) Perform a BIG-N fault injection for the word p = e(i1) + e(i2) in degree zero, and let
p̃ ∈ Fn2 be its output.

(2) If wt(p̃) = 2 and p̃ 6= p , then write Ip̃ = {j1, j2} , return the polynomial

xi1 + xi2 + xj1 + xj2 ∈ F2m [x1, . . . , xn]

and stop. Otherwise, continue with (1).

This is a Las Vegas algorithm, i.e., it may not terminate, but if it does terminate, then it
returns a linear polynomial f ∈ F2m [x1, . . . , xn] such that f(α1, . . . , αn) = 0.

Proof. To prove correctness, it suffices to note that, if the algorithm stops in step (2),
Proposition 5.2.a can be applied and yields αi1 + αi2 = αj1 + αj2 .

Naturally, the question arises how many faults have to be injected on average until
this algorithms stops. It turns out that in the case n = 2m the precise number is given by

2m

2m−1−1 ≈ 2. For the general case n ≤ 2m , the probability of a successful constant fault

injection is estimated in Table 2 for a selection of parameters (see Section 7).
Similarly, also Proposition 5.2.b can be used via repeated fault injections to gain a

quadratic equation satisfied by (α1, . . . , αn). Moreover, it allows us to check whether αi = 0
for a given i ∈ {1, . . . , n} .

Algorithm 5.4. (A Quadratic Fault Injection Sequence)
Given a BIG-N cryptosystem (Ksec,Kpub, C,P, encr, decr) as above and i ∈ {1, . . . , n} ,
consider the following sequence of instructions.

(1) Perform a BIG-N fault injection for the word p = e(i) in degree 2, and let p̃ ∈ Fn2 be its
output.

(2) If wt(p̃) > 1 and i ∈ Ip̃ then return xi ∈ F2m [x1, . . . , xn] and stop.

2:12 Julian Danner and Martin Kreuzer Vol. 12:1

(3) If wt(p̃) = 2 then write Ip̃ = {j1, j2} , return the polynomial

xixj1 + xixj2 + xj1xj2 ∈ F2m [x1, . . . , xn]

and stop. Otherwise, continue with (1).

This is a Las-Vegas algorithm. If it terminates, it returns a linear or quadratic polynomial
f ∈ F2m [x1, . . . , xn] such that f(α1, . . . , αn) = 0. Moreover, if the algorithm stops in step (3)
then we have αi, αj1 , αj2 ∈ F2m \ {0} .

Proof. To show correctness, we distinguish two cases. If the algorithm terminates in step (2),

it suffices to prove αi = 0. Let (e(i), 2, p̃) be the quadratic fault injection of step (1), and let

ε ∈ F2m be the fault that it uses. Since wt(p̃) > 1, we have wt(e(i)) = 1 < wt(p̃), and hence
Proposition 4.7.a yields ε 6= 0. Now i ∈ Ip̃ and Proposition 4.7.c imply αi = 0, as claimed.
This also proves that, if the algorithm terminates in step (3), we must have αi 6= 0.

Next, assume that the algorithm terminates in step (3). We just saw that this forces αi
to be non-zero. Let (e(i), 2, p̃) be the quadratic fault injection of step (1). Since wt(p̃) = 2,
we write Ip̃ = {j1, j2} and note that Proposition 5.2.b yields αiαj1 + αiαj2 + αj1αj2 = 0.
Thus (α1, . . . , αn) is a zero of the given polynomial f . Moreover, as αi 6= 0, we also get
αj1 6= 0 and αj2 6= 0 by the same proposition.

Again, it is not clear how many fault injections are typically required for one execution
of the algorithm. In the case n = 2m , it turns out that on average 2m

2m−1−1 ≈ 2 faults need

to be injected if αi 6= 0, and otherwise 2m

2m−1 ≈ 1 faults are required. For the general setting

n ≤ 2m , estimates for this number can be found in Table 2 (see Section 7).

6. The BIG-N Fault Attack

In this section we first derive some simplifications of the systems of polynomial equations we
obtain by performing constant and quadratic fault injection sequences (see Algorithms 5.3
and 5.4). After that we present a strategy to determine all solutions of such a system.
Finally, we explain how one can check whether they can be extended to an alternative secret
pair. To begin with, consider the following property of Goppa codes.

Proposition 6.1. Let α ∈ Fn2m be a support tuple, let g ∈ F2m [x] be a Goppa polynomial
for α , and let a ∈ F2m \ {0}. Then we have

Γ(α, g(x)) = Γ(a · α, g(a−1 · x))

Proof. For c ∈ Γ(α, g), we let ηc,α(x) =
∑

i∈Ic
∏
j∈Ic\{i}(x − αj). By Remark 2.2, we

have g | ηc,α . By applying the ring homomorphism Ψa : F2m [x] −→ F2m [x] defined by
Ψa(x) = a−1 · x , we get Ψa(g(x)) | Ψa(ηc,α(x)), where

Ψa(ηc,α(x))) = ηc,α(a−1 · x) = a−(wt(c)−1)ηc,a·α(x)

Thus Ψa(g) | ηc,a·α , and using Remark 2.2 we see that c ∈ Γ(a · α,Ψa(g)). Therefore we
have Γ(α, g) ⊆ Γ(a · α, g(a−1 · x)).

Conversely, we apply this inclusion to the Goppa code Γ(aα, g(a−1x)) with the factor
a−1 and obtain Γ(a · α, g(a−1 · x)) ⊆ Γ(a−1 · a · α, g(a · a−1 · x)) = Γ(α, g). This finishes the
proof.

In the following we fix a BIG-N cryptosystem (Ksec,Kpub, C,P, encr, decr) and use the
notation introduced in the preceding sections.

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:13

Remark 6.2. Let L ⊆ F2m [x1, . . . , xn] be a set of polynomials obtained by constant and
quadratic fault injection sequences. By

ZF2m
(L) = {(a1, . . . , an) ∈ Fn2m | f(a1, . . . , an) = 0 for all f ∈ L}

we denote the zero set of L in F2m . Now we consider the set

SL = {(a1, . . . , an) ∈ ZF2m
(L) | ai 6= aj for i 6= j}

Since every f ∈ L results from Algorithms 5.3 or 5.4, we have f(α1, . . . , αn) = 0, and
since α = (α1, . . . , αn) is a support tuple, we even get α ∈ SL .

Notice that the polynomials in L are homogeneous. Hence the set L generates a
homogeneous ideal in F2m [x1, . . . , xn] . Consequently, for (a1, . . . , an) ∈ SL and b ∈ F2m \{0}
we also have (ba1, . . . , ban) ∈ SL . In view of Proposition 6.1 and the fact that g(x) is
irreducible if and only if g(b−1 · x) is irreducible, we can therefore assume without loss of
generality that one non-zero support element αi with i ∈ {1, . . . , n} is chosen arbitrarily to
be 1.

This means that we may choose an index i ∈ {1, . . . , n} for which we know that αi 6= 0.
Then we consider the dehomogenization of L with respect to the indeterminate xi , i.e.,
we add the polynomial xi − 1 to L . To determine such an index we can use a quadratic
fault injection sequence. Clearly, it is best to choose the indeterminate that occurs most
frequently in the polynomials of L , in order to simplify the fault equations system as much
as possible.

In view of this remark, we are led to the following definitions.

Definition 6.3. Let C = Γ(α, g) be a binary irreducible Goppa code, and let (Ksec,Kpub,P,
C, encr, decr) be a BIG-N cryptosystem which uses C .

(a) Let L1 ⊆ F2m [x1, . . . , xn] be a set of linear polynomials obtained from constant fault
injection sequences (see Algorithm 5.3). Let L2 ⊆ F2m [x1, . . . , xn] be a set of linear
and quadratic polynomials obtained from quadratic fault injection sequences (see Al-
gorithm 5.4). Let i ∈ {1, . . . , n} be such that the indeterminate xi occurs in some
quadratic polynomial of L2 . Then the set L1 ∪L2 ∪{xi− 1} is called a fault equation
system.

(b) Given a set of polynomials L ⊆ F2m [x1, . . . , xn] , we call

SL = {(a1, . . . , an) ∈ ZF2m
(L) | ai 6= aj for i 6= j} ⊆ Fn2m

the support candidate set of L , and every element (a1, . . . , an) ∈ SL is called a
support candidate of L .

Given a fault equation system L , Remark 6.2 shows that we may assume α ∈ SL . Hence
the task of finding α is reduced to solving a suitable fault equation system. In view of
Algorithm 3.3, we may reduce this task further.

Definition 6.4. Let C = Γ(α, g) be a binary Goppa code, let α̃ ∈ Fn2m be a support tuple,
and let u ∈ N+ .

(a) A Goppa polynomial g̃ ∈ F2m [x] for α̃ with C ⊆ Γ(α̃, g̃) and deg(g̃) = u is called a
degree-u extension of α̃ with respect to C .

(b) A support tuple α̃ is called degree-u extendable to C if there exists a degree-u
extension of α̃ with respect to C .

If the code C is clear from the context, it may also be omitted.

2:14 Julian Danner and Martin Kreuzer Vol. 12:1

Remark 6.5. As explained at the end of Section 3, one can apply Algorithm 3.3 to break a
BIG-N cryptosystem which uses a binary Goppa code C = Γ(α, g) with deg(g) = t as follows:
Find a support tuple α̃ ∈ Fn2m and a Goppa polynomial g̃ ∈ F2m [x] with deg(g̃) = u ≥ 2t
such that g̃ is a degree-u extension of α̃ with respect to C . This is the reason why (α̃, g̃)
is called an alternative secret pair.

In order to find such a support tuple α̃ ∈ Fn2m , we generate a fault equation system
L ⊆ F2m [x1, . . . , xn] using constant and quadratic fault injection sequences. Note that
C = Γ(α, g2) and α ∈ SL imply that at least one degree-2t extendable support candidate
can be found in SL .

Based on these observations, we now perform a BIG-N fault attack which is based on the
following three steps: Firstly, we compute the support candidate set SL of a fault equation
system L . Secondly, we determine a degree-u extendable support candidate α̃ ∈ SL with
u ≥ 2t and its corresponding extension. Finally, we combine everything and compute an
alternative secret pair, thereby breaking the system.

6.1. Finding Support Candidates. Let L ⊆ F2m [x1, . . . , xn] be a fault equation system.
Then the problem of computing the support candidate set SL can be reduced to finding
the zero set ZF2m

(L). Computing this zero set is a classic problem of computer algebra
which can be solved, for instance, using Gröbner basis techniques (see [13, Sec. 3.7] or [14,
Sec. 6.3]). However, in order to improve the efficiency of these methods, it is important
that we first use the linear equations in L to eliminate some indeterminates and reduce the
complexity of the quadratic equations. The following algorithm aids this task.

Algorithm 6.6. (Solving a Fault Equation System)
Let N be a BIG-N cryptosystem, and let L ⊆ F2m [x1, . . . , xn] be a fault equation system
obtained by applying constant and quadratic fault injection sequences to N . Moreover, let
σ be a term ordering. Consider the following sequence of instructions.

(1) Let Llin = {f ∈ L | deg(f) = 1} .
(2) Interreduce the set Llin linearly and get a set Lirlin = {`1, . . . , `r} such that, for

i = 1, . . . , r , the indeterminate LTσ(`i) does not occur in the other polynomials of Lirlin .
Renumber the indeterminates such that LTσ(`i) = xi for i ∈ {1, . . . , r} .

(3) Define a ring homomorphism Ψ : F2m [x1, . . . , xn] −→ F2m [xr+1, . . . , xn] by Ψ(xi) =
`i + xi for i ∈ {1, . . . , r} , and by Ψ(xi) = xi for i ∈ {r + 1, . . . , n} .

(4) Let Lred = Ψ(L) \ {0} . Compute Sred = ZF2m
(Lred) using Gröbner basis techniques.

(5) Define a map ψ : Fn−r2m −→ Fn2m by ψ(γ) = (Ψ(x1)(γ), . . . ,Ψ(xn)(γ)).
(6) Return S = {(α̃1, . . . , α̃n) ∈ ψ(Sred) | α̃i 6= α̃j for i 6= j} .
This is an algorithm which computes the support candidate set SL of L .

Proof. Since finiteness is clear, we have to show that the set S returned in step (6) is indeed
equal to SL .

First we show the inclusion S ⊆ SL . Let γ ∈ Sred with ψ(γ) ∈ S . By construction, we
have Ψ(f) ∈ Lred for all f ∈ L . Hence we get 0 = Ψ(f)(γ) = f(Ψ(x1)(γ), . . . ,Ψ(xn)(γ)) =
f(ψ(γ)). Since this equality holds for all f ∈ L , we conclude that ψ(γ) ∈ ZF2m

(L).

Therefore we have ψ(Sred) ⊆ ZF2m
(L), and by the construction of S also S ⊆ SL .

Conversely, let α̃ = (α̃1, . . . , α̃n) ∈ SL . To prove α ∈ S , it suffices to show that
α̃ = ψ(γ) and γ ∈ Sred for γ = (α̃r+1, . . . , α̃n). By the definition of Ψ and the fact

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:15

that `i(α̃) = 0 for i ∈ {1, . . . , r} , we have Ψ(xi)(γ) = α̃i for i ∈ {1, . . . , n} . This yields
ψ(γ) = (Ψ(x1)(γ), . . . ,Ψ(xn)(γ)) = (α̃1, . . . , α̃n) = α̃ .

Thus it remains to show that γ ∈ Sred = ZF2m
(Lred). Note that, by construction, we

have Lred = {Ψ(f) | f ∈ L} . Using Ψ(xi)(γ) = α̃i for i ∈ {1, . . . , n} and α̃ ∈ SL , we have

Ψ(f)(γ) = f(Ψ(x1)(γ), . . . ,Ψ(xn)(γ)) = f(α̃1, . . . , α̃n) = f(α̃) = 0

for all Ψ(f) ∈ Lred . This proves γ ∈ ZF2m
(Lred), and hence α̃ ∈ S .

6.2. Finding Suitable Goppa Polynomials. Recall that the generating pair (α, g) of
the irreducible Goppa code C = Γ(α, g) is part of the secret key of any BIG-N cryptosystem
using C . The code C itself is published via the public parity check matrix Hpub . Let
L ⊆ F2m [x1, . . . , xn] be a fault equation system, let SL be its support candidate set, let
α̃ ∈ SL be a support candidate which is degree-u extendable with respect to C for some
u ≥ 2t , and let g̃ ∈ F2m [x] be a degree-u extension of α̃ . This means that C ⊆ Γ(α̃, g̃). By
Remark 2.2, it follows for all c ∈ Γ(α̃, g̃) that we have

g̃ |
∑
i∈Ic

∏
j∈Ic\{i}

(x− α̃j)

in F2m [x] . In particular, this divisibility then holds for all c ∈ C . Hence, knowing only C
and α̃ , we can compute multiples of the desired polynomial g̃ . The following algorithm uses
these observations and computes an extension g̃ of a given support tuple α̃ if and only if α̃
is extendable. Note that its core idea is based on [19, p. 125].

Algorithm 6.7 (GoppaGCD).
Input: A support tuple α̃ ∈ Fn2m , t ∈ N+ , and a binary Goppa code C ⊆ Fn2 .
Output: Fail, or a degree-2t extension of α̃ with respect to C .

1: Let g̃ := 0, and let B be an F2 -basis of C .
2: for c ∈ B do
3: ηc,α̃ :=

∑
i∈Ic

∏
j∈Ic\{i}(x− α̃j)

4: g̃ := gcd(g̃, ηc,α̃)
5: if deg(g̃) < 2t then
6: return Fail

7: end if
8: end for
9: for i = 1, . . . , n do

10: while g̃(α̃i) = 0 do

11: g̃ := g̃
x−α̃i

12: end while
13: end for
14: if deg(g̃) < 2t then
15: return Fail

16: else
17: return g̃
18: end if

Proposition 6.8. Let α̃ ∈ Fn2m be a support tuple, let t ∈ N+ , and let C ⊆ Fn2 be a binary
Goppa code. Then Algorithm 6.7 is finite and the following conditions are equivalent.

2:16 Julian Danner and Martin Kreuzer Vol. 12:1

(a) The function GoppaGCD(α̃, t, C) returns a degree-u extension of α̃ with respect to C for
some u ≥ 2t.

(b) The tuple α̃ is degree-u extendable with respect to C for some u ≥ 2t.

Otherwise, the algorithm returns Fail.

Proof. Since finiteness is clear, it suffices to prove the equivalence of (a) and (b) and the
additional claim. To begin with, we show that the output of the function GoppaGCD(α̃, t, C)
is either Fail or a degree-u extension of α̃ for some u ≥ 2t .

Clearly, the algorithm ends either in step (6), (15), or (17). Hence it terminates with
Fail or a polynomial g̃ ∈ F2m [x] . Suppose that it ends in step (17) with a polynomial g̃ .
Notice that this entails deg(g̃) ≥ 2t , as otherwise the algorithm would have terminated at
the latest in step (15).

Thus it remains to prove C ⊆ Γ(α̃, g̃). By the loop in steps (9)-(13), we have g̃(α̃i) 6= 0
for all i ∈ {1, . . . , n} . Therefore g̃ is a Goppa polynomial for the support tuple α̃ and Γ(α̃, g̃)
is a binary Goppa code. Let B = {c1, . . . , ck} be the F2 -basis of C chosen in step (1).
By the construction of g̃ in steps (2)-(8), we have g̃ | ηci,α̃ for all i ∈ {1, . . . , k} . Since in
steps (9)-(13) only factors of g̃ are removed, these divisibilities still hold true in step (17).
Therefore the polynomial g̃ returned in step (17) satisfies g̃ | ηci,α̃ for all i ∈ {1, . . . , k} . By
Remark 2.2, this implies that ci ∈ Γ(α̃, g̃) for all i ∈ {1, . . . , k} . Using the fact that B is
an F2 -basis of C , we deduce C ⊆ Γ(α̃, g̃).

Since the implication (a)⇒(b) is trivially true, it remains to prove that (b) implies (a).
Let ĝ ∈ F2m [x] be a degree-u extension of α̃ , where u ≥ 2t . Let B = {c1, . . . , ck} be the
F2 -basis of C chosen is step (1). From the hypothesis and Remark 2.2, we get that ĝ | ηci,α̃
for i ∈ {1, . . . , k} . Since we compute g̃ in steps (2)-(8) as the greatest common divisor of
the polynomials ηci,α̃ for i ∈ {1, . . . , k} , we have ĝ | g̃ in every iteration of the loop. In
particular, this implies that we have deg(g̃) ≥ deg(ĝ) ≥ 2t and thus the algorithm does
not terminate in this loop. Now, in steps (9)-(13), all linear factors of the form (x − α̃i)
for i ∈ {1, . . . , n} are removed, and thus we get g̃(α̃i) 6= 0 for all i ∈ {1, . . . , n} . As ĝ is a
Goppa polynomial for α̃ , we also have ĝ(α̃i) 6= 0 for i ∈ {1, . . . , n} . Consequently, we have
ĝ | g̃ , and therefore deg(g̃) ≥ deg(ĝ) ≥ 2t . Finally, the algorithm terminates in step (17) by
returning the polynomial g̃ ∈ F2m [x] . This finishes the proof.

Note that an F2 -basis B of C , as required in step (1), can be deduced from the rows of
a generator matrix of C . Moreover, when the degree of the polynomial g̃ is equal to 2t in
the course of the loop (2)-(8), the polynomial will either stay the same for the remaining
execution of the algorithm, or the result is Fail. Therefore we can also stop the algorithm
at this point and use any other method to check if g̃ is a Goppa polynomial for α̃ and if we
have C ⊆ Γ(α̃, g̃). For instance, an efficient method is to compare a parity check matrix of
Γ(α̃, g̃) with Hpub .

6.3. Computing an Alternative Secret Pair. In this subsection we combine the algo-
rithms of the previous two subsections and obtain the following fault attack algorithm which
returns an alternative secret pair.

Algorithm 6.9. (BIG-N Fault Attack)
Let m, t, n ∈ N+ be such that mt < n ≤ 2m , let C = Γ(α, g) be a binary irreducible Goppa
code with parameters (m, t, n), and let N be a BIG-N cryptosystem which uses C . Suppose
that the implementation of the decryption map satisfies Assumptions 4.2, 4.3, and 4.4.

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:17

Let L ⊆ F2m [x1, . . . , xn] be a fault equation system which has been constructed using
constant and quadratic fault injection sequences applied to N .

(1) Compute the support candidate set SL of L using Algorithm 6.6.
(2) Choose α̃ ∈ SL and remove it from SL .
(3) Use Algorithm 6.7 to compute GoppaGCD(α̃, t, C). If the output is Fail, then go to

step (2). Otherwise, the output is a polynomial g̃ . Return the pair (α̃, g̃) and stop.

This is an algorithm which computes an alternative secret pair (α̃, g̃).

Proof. First we prove finiteness. For the support candidate set SL of step (1), we may
assume α ∈ SL by Remark 6.2. Since SL ⊆ Fn2m is a finite set, after finitely many iterations
of steps (2) and (3) the support tuple α̃ = α ∈ SL is chosen. Since α is degree-2t extendable
using the extension g2 , Proposition 6.8 shows that the call to GoppaGCD(α̃, t, C) in step (3)
returns a polynomial g̃ ∈ F2m [x] . Hence the algorithm terminates.

It remains to prove that the output (α̃, g̃) is an alternative secret pair. By Proposition 6.8,
the algorithm terminates in step (3) if and only if α̃ ∈ SL is degree-u extendable for some
u ≥ 2t . In this case the polynomial g̃ is a degree-u extension of α̃ for some u ≥ 2t , and
Algorithm 3.3 implies that (α̃, g̃) is an alternative secret pair.

7. Experiments and Timings

In this section we apply the BIG-N fault attack (Algorithm 6.9) to a selection of state-of-
the-art security levels. Table 1 contains a list of recommended parameter choices for the
Goppa codes to be used in the BIG-N cryptosystem along with their claimed security.

Security Level n m t

insec (60bit) 1024 10 38
short I (80bit) 2048 11 27
short II (80bit) 1632 11 33
mid I (128bit) 2960 12 56
mid II (147bit) 3408 12 67
long I (191bit) 4624 13 95
long II (256bit) 6624 13 115
long III (266bit) 6960 13 119

Table 1: Security parameters for BIG-N cryptosystems proposed in [4].

Recall that the only input of the BIG-N fault attack is a fault equation system. It can
be computed, for instance, using the following algorithm. Our experiments show that fault
equation systems obtained with this method can be solved efficiently with Algorithm 6.6.

Algorithm 7.1. (Computing a Fault Equation System)
Let m, t, n ∈ N+ be such that mt < n ≤ 2m , let C = Γ(α, g) be a binary irreducible Goppa
code with parameters (m, t, n), and let N be a BIG-N cryptosystem which uses C . Suppose
that the implementation of the decryption map satisfies Assumptions 4.2, 4.3, and 4.4.
Consider the following sequence of instructions.

(1) Let I := {(n, 1)} ∪ {(i, i+ 1) | i ∈ {1, . . . , n− 1}} ⊆ {1, . . . , n}2 .

2:18 Julian Danner and Martin Kreuzer Vol. 12:1

(2) For each pair (i1, i2) ∈ I , perform a constant fault injection sequence and collect the
resulting linear polynomials in L1 ⊆ F2m [x1, . . . , xn] .

(3) Let I ⊆ {1, . . . , n} with #I = b n10c be chosen uniformly at random.
(4) For each index i ∈ I , perform a quadratic fault injection sequence and collect the

resulting polynomials in L2 ⊆ F2m [x1, . . . , xn] .
(5) Let xi be an indeterminate which occurs most often in the terms of the polynomials

of L1 and which appears in L2 \ {x1, . . . , xn} .
(6) Return L = L1 ∪ L2 ∪ {xi − 1} and stop.

This is a Las-Vegas algorithm which performs n constant fault injection sequences and b n10c
quadratic fault injection sequences. It returns a fault equation system L ⊆ F2m [x1, . . . , xn] .

In order to determine the expected number of BIG-N fault injections needed during
the computation of a fault equation system using this algorithm, we denote the probability
of a successful constant fault injection by p0 and the probability of a successful quadratic
fault injection by p2 . Then we expect that n

p0
+ b n10c

1
p2

faults have to be injected in total to

generate the fault equation system using Algorithm 7.1.
Since there is no obvious formula to calculate these probabilities, they were estimated

in the following way: For each security level, we considered three random irreducible Goppa
codes. For each Goppa code, we chose uniformly at random 200 distinct words p for the
fault injection sequences in step (2) and (4), respectively. For each word p , we computed
the exact number of faults which lead to a successful fault injection. Dividing the average of
those three numbers by 2m yields our estimates p̂0 and p̂2 respectively.

Table 2 contains, both for the constant and the quadratic fault injection sequences,
the average number of faults which lead to a successful fault injection and the estimated
standard deviation. The estimates p̂0 and p̂2 for p0 and p2 are also given.

Sec Lvl Parameters succ const inj p̂0 succ quad inj p̂2
n m t avg std dev (%) avg std dev (%)

insec 1024 10 38 511.0 0.0 49.9 511.0 0.0 49.9
short I 2048 11 27 1023.0 0.0 50.0 1023.0 0.0 50.0
short II 1632 11 33 649.5 5.3 31.7 649.5 5.2 31.7
mid I 2960 12 56 1067.9 9.3 26.1 1069.2 8.8 26.1
mid II 3408 12 67 1416.4 6.6 34.6 1417.0 6.5 34.6
long I 4624 13 95 1304.5 15.4 15.9 1303.7 15.3 15.9
long II 6624 13 115 2677.5 10.0 32.7 2676.8 9.9 32.7
long III 6960 13 119 2955.5 8.3 36.1 2955.8 8.8 36.2

Table 2: Average numbers of faults and success probabilities.

Observe that the success probabilities drop significantly when the ratio n
2m gets smaller.

This can be attributed to the fact that a constant or quadratic fault injection is successful
if and only if the faulty error-locator polynomial σ̃p(x) has two zeros among the support
elements {α1, . . . , αn} , and it seems natural that there are more such faults when n is
larger.

An implementation of a BIG-N cryptosystem following the FPGA-based implementation
of [26, 27] is provided in the computer algebra system CoCoA-5 [1] along with all algorithms

Vol. 12:1 A FAULT ATTACK ON THE BIG-N CRYPTOSYSTEM 2:19

of this paper. For the computation of the zero set of the reduced fault equation system Lred

in step (4) of Algorithm 6.6, we make use the CoCoA-5 function RationalSolve which uses
Gröbner basis computations.

Timings of the BIG-N fault attack (Algorithm 6.9) for all security parameters of Table 1
are given in Table 3. We also list the size of the reduced fault equation system Lred , as
computed in step (4) of Algorithm 6.6, the time for computing its zero set ZF2m

(Lred) using
the CoCoA-5 function RationalSolve, and the time for extending a support candidate to
an alternative secret pair using Algorithm 6.7. The timings represent the average of three
runs of the algorithm applied to distinct randomly generated BIG-N cryptosystems.

sec lvl
interreduced Lred RatSol Alg 6.7 total exp no req
ind eq (s) (s) (s) (s) fault inj

insec 10 46 4.5 2.6 13.1 20.5 2258.41
short I 10-11 55-56 28.4 4.1 19.0 52.9 4510.40
short II 11 56 15.7 4.2 19.0 39.8 5563.51
mid I 12 67 88.0 7.1 71.2 169.5 12474.52
mid II 11-12 66-67 119.9 6.3 101.7 231.9 10840.84
long I 13 79 304.2 13.1 240.9 566.1 31946.16
long II 13 79 866.1 13.1 438.2 1333.8 22295.50
long III 13 79 938.4 13.2 481.0 1450.9 21220.49

Table 3: Timings of the BIG-N fault attack (Algorithm 6.9).

This table shows that a straightforward implementation of the BIG-N cryptosystem
using classical decoding methods is quite susceptible to the BIG-N fault attack. Even state-
of-the-art security parameters were broken in about 20 minutes. Therefore we recommended
to implement the countermeasures proposed in Remark 4.6.

Acknowledgements. This research was supported by DFG (German Research Foundation)
project “Algebraische Fehlerangriffe” grant KR 1907/6-2.

References

[1] John Abbott, Anna M. Bigatti, and Lorenzo Robbiano. CoCoA: a system for doing Computations in
Commutative Algebra. Available at http://cocoa.dima.unige.it.

[2] Roberto Avanzi, Simon Hoerder, Dan Page, and Michael Tunstall. Side-channel attacks on the McEliece
and Niederreiter public-key cryptosystems. J. Cryptogr. Eng., 1(4):271–281, 2011.

[3] Elwyn Berlekamp. Nonbinary BCH decoding (abstr.). IEEE Trans. Inf. Theory, 14(2):242–242, 1968.
[4] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the McEliece cryp-

tosystem. In International Workshop on Post-Quantum Cryptography, volume 5299 of LNCS, pages
31–46. Springer-Verlag, 2008.

[5] Jakub Breier, Xiaolu Hou, and S. Bhasin. Automated Methods in Cryptographic Fault Analysis. Springer
Int. Publishing, Cham, 2019.

[6] Pierre-Louis Cayrel and Pierre Dusart. McEliece/Niederreiter PKC: sensitivity to fault injection. In 5th
International Conference on Future Information Technology, pages 1–6. IEEE, 2010.

[7] Hang Dinh, Cristopher Moore, and Alexander Russell. McEliece and Niederreiter cryptosystems that
resist quantum Fourier sampling attacks. In Advances in Cryptology – CRYPTO 2011, volume 6841 of
LNCS, pages 761–779. Springer-Verlag, 2011.

2:20 Julian Danner and Martin Kreuzer Vol. 12:1

[8] Jean L. Dornstetter. On the equivalence between Berlekamp’s and Euclid’s algorithms (corresp.). IEEE
Trans. Inf. Theory, 33(3):428–431, 1987.

[9] Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich. Algebraic cryptanalysis
of McEliece variants with compact keys. In Advances in Cryptology – EUROCRYPT 2010, volume 6110
of LNCS, pages 279–298. Springer-Verlag, 2010.

[10] Stefan Heyse and Tim Güneysu. Code-based cryptography on reconfigurable hardware: tweaking
Niederreiter encryption for performance. J. Cryptogr. Eng., 3(1):29–43, 2013.

[11] Jinhwei Hu, Wangchen Dai, Liu Yao, and Ray C. C. Cehung. An application specific instruction set
processor (ASIC) for the Niederreiter cryptosystem. In Asaf Varol, Murat Karabatak, and Cihat Varol,
editors, 6th Int. Symp. on Digital Forensic and Security (ISDFS 2018), Piscataway, 2018. IEEE.

[12] Marc Joye and Michael Tunstall. Fault Analysis in Cryptography. Springer-Verlag, Berlin Heidelberg,
2012.

[13] Martin Kreuzer and Lorenzo Robbiano. Computational Commutative Algebra 1. Springer-Verlag, Heidel-
berg, 2000.

[14] Martin Kreuzer and Lorenzo Robbiano. Computational Linear and Commutative Algebra. Springer Int.
Publ., Cham, 2016.

[15] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory,
15(1):122–127, 1969.

[16] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in O(20.054n) . In
Advances in Cryptology – ASIACRYPT’11, volume 7073 of LNCS, pages 107–124. Springer-Verlag, 2011.

[17] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. Deep Space Network
Progress Report, 44:114–116, 1978.

[18] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob. Control and Inf.
Theory, 15(2):159–166, 1986.

[19] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J. Bernstein, Johannes
Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography, pages 95–145. Springer-Verlag,
Berlin, Heidelberg, 2009.

[20] Nicholas Patterson. The algebraic decoding of Goppa codes. IEEE Trans. Inf. Theory, 21(2):203–207,
1975.

[21] Mélissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson. A side-channel assisted cryptanalytic
attack against QcBits. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and
Embedded Systems – CHES 2017, volume 10529 of LNCS, pages 3–23. Springer-Verlag, 2017.

[22] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[23] Falko Strenzke. Fast and secure root finding for code-based cryptosystems. In Josef Pieprzyk, Ahmad-
Reza Sadeghi, and Mark Manulis, editors, Cryptology and Network Security – CANS 2012, volume 7712
of LNCS, pages 232–246. Springer-Verlag, 2012.

[24] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdulhadi Shoufan. Side channels
in the McEliece PKC. In Johannes Buchmann and Jintai Ding, editors, Post-Quantum Cryptography –
PQCrypto 2008, volume 5299 of LNCS, pages 216–229. Springer-Verlag, 2008.

[25] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa. A method for solving
key equation for decoding Goppa codes. Inform. Control, 27(1):87–99, 1975.

[26] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based key generator for the Niederreiter
cryptosystem using binary Goppa codes. In Wieland Fischer and Naofumi Homma, editors, Cryptographic
Hardware and Embedded Systems – CHES 2017, volume 10529 of LNCS, pages 253–274. Springer-Verlag,
2017.

[27] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter cryptosystem using binary
Goppa codes. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography, volume
10786 of LNCS, pages 77–98. Springer-Verlag, 2018.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Binary Goppa Codes
	3. BIG-N Cryptosystems
	4. The BIG-N Fault Injection Framework
	5. Constant and Quadratic Fault Injection Sequences
	6. The BIG-N Fault Attack
	6.1. Finding Support Candidates
	6.2. Finding Suitable Goppa Polynomials
	6.3. Computing an Alternative Secret Pair

	7. Experiments and Timings
	Acknowledgements

	References

