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Abstract. For any group G and integer k ≥ 2 the Andrews-Curtis transformations act as a
permutation group, termed the Andrews-Curtis group ACk(G), on the subset Nk(G) ⊂ Gk

of all k-tuples that generate G as a normal subgroup (provided Nk(G) is non-empty).
The famous Andrews-Curtis Conjecture is that if G is free of rank k, then ACk(G) acts
transitively on Nk(G). The set Nk(G) may have a rather complex structure, so it is
easier to study the full Andrews-Curtis group FAC(G) generated by AC-transformations
on a much simpler set Gk. Our goal here is to investigate the natural epimorphism
λ : FACk(G) → ACk(G). We show that if G is non-elementary torsion-free hyperbolic,
then FACk(G) acts faithfully on every nontrivial orbit ofGk, hence λ : FACk(G) → ACk(G)
is an isomorphism.

In memory of Ben Fine

1. The Andrews-Curtis Conjecture

Andrews-Curtis groups were introduced in connection with the Andrews-Curtis Conjecture
(ACC) proposed by James J. Andrews and Morton L. Curtis in 1965 [4]. According to this
conjecture a presentation P which is balanced (the number of its relators equals the number
of its generators) presents the trivial group if and only if P can be reduced to the standard
presentation of the trivial group by Andrews-Curtis transformations (defined below) of its
sequence of relators. In other words ⟨x1, . . . , xk | u1, . . . , uk⟩ presents the trivial group if
and only if (u1, . . . , uk) is AC-equivalent to (x1, . . . , xk).

Many people believe that the ACC is false. Indeed searching for counterexamples is
currently an active area of research. In 1985, Akbulut and Kirby [2] suggested a sequence of
potential counterexamples to the ACC of rank 2:

AK(n) = ⟨x, y| xn = yn+1, xyx = yxy⟩, n ≥ 2.
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The presentations AK(n) are balanced presentations of the trivial group, and it was conjec-
tured that that the pair of relators (xny−n−1, xyxy−1x−1y−1) is not AC-equivalent to the
pair of generators(x, y). It turned out later that the presentation AK(2) is AC-trivializable
(see [18, 19]), so AK(2) is not a counterexample to the ACC. The question whether or
not the presentations AK(n) with n > 2 are trivializable is still open despite an ongoing
effort by the research community. Currently, AK(3) is the shortest (in the total length
of relators) potential counterexample to the ACC. Indeed, it was proved in [14] that if
⟨x, y | u = 1, v = 1⟩ is a presentation of the trivial group with |u| + |v| ≤ 13 then either
(u, v) ∼AC (x, y) or (u, v) ∼AC (x3y−4, xyxy−1x−1y−1). See papers [17, 8, 18, 19, 22, 23] for
more details and some particular results. It was shown in [7] that AC-trivializations could
be complex and exponentially long, so brute-force search algorithms are not going to work
easily. Recently, methods of Reinforcement Learning were used with success in search for
AC-trivializations of several known balanced presentations of the trivial group, see [26]; as
well as axiomatic theorem proving [16].

To construct a counterexample to the ACC one might study the group structure of
AC-transformations in an arbitrary group G and apply this knowledge to the ACC. For
example, if the presentation AK(3) is not AC-trivializable in a group G, then it is not
AC-trivializable in F2, hence the ACC fails. Below we initiate a study of the group of
AC-transformations of a non-elementary torsion-free hyperbolic group.

2. AC transformations

AC transformations can be defined for any group G. The following are the elementary
Andrews-Curtis transformations (or AC-moves) on Gk, where k ≥ 2 is a natural number
and Gk is the direct power of k copies of G.

(Rij) (u1, . . . , ui, . . . , uk) −→ (u1, . . . , uiu
±1
j , . . . , uk), i ̸= j;

(Lij) (u1, . . . , ui, . . . , uk) −→ (u1, . . . , u
±1
j ui, . . . , uk), i ̸= j;

(Ii) (u1, . . . , ui, . . . , uk) −→ (u1, . . . , u
−1
i , . . . , uk);

(Ci,w) (u1, . . . , ui, . . . , uk) −→ (u1, . . . , u
w
i , . . . , uk), w ∈ G.

Transformations Rij , Lij , Ii are also called elementary Nielsen transformations. A com-
position of finitely many elementary Andrews-Curtis transformations is called an AC-
transformation. Likewise a composition of elementary Nielsen transformations is a Nielsen
transformation. Clearly AC transformations are invertible. The group they generate is
FACk(G), the full Andrews-Curtis group of G of rank k. To define the original Andrews-
Curtis group ACk(G), denote by Nk(G) the set of all k-tuples in Gk which generate G as a
normal subgroup (here we consider only such k that Nk(G) ̸= ∅). Again, every elementary
AC-transformation induces a bijection on Nk(G) and the subgroup of Sym(Nk(G)) generated
by these bijections is the AC group of G, denoted by ACk(G). The AC conjecture can be
stated as follows: for every free group F of rank k ≥ 2 the Andrews-Curtis group ACk(F )
acts transitively on the set Nk(F ). The set Nk(G) can be quite complex, for example, it is
known that there is no algorithm to decide whether a group given by a finite presentation is
trivial or not [1, 24]. Whether such an algorithm exists for balanced presentations is an open
and difficult problem (see [5]). It follows that the set Nk(F ) is computably enumerable, but it
is not known if it is computable. On the other hand, if G is finitely generated with decidable
word problem then the set Gk is computable. In particular, the set F k is computable. So it
might be easier to study the group FACk(G) then ACk(G). Observe, that the restriction of
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a bijection α ∈ FACk(G) onto the set Nk(G) gives a bijection ᾱ ∈ ACk(G). It is easy to
see that the map α → ᾱ gives rise to an epimorphism

λG,k : FACk(G) → ACk(G).

General Problem 1. For a given group G and k ≥ 2, describe the kernel of the epimorphism
λG,k : FACk(G) → ACk(G).

Below we address this problem for torsion-free hyperbolic groups G.
The main result of the paper (proved in Section 4) is as follows.

Theorem 2.1. Let G be a torsion-free non-elementary hyperbolic group. Then FACk(G) acts
faithfully on every nontrivial orbit in Gk (the trivial orbit consists of the k-tuple (1, 1, . . . , 1)).

Corollary 2.2. Let G be a non-elementary torsion-free hyperbolic group. Then for any
k ≥ 2 λG,k : FACk(G) → ACk(G) is an isomorphism.

Note that in [25] Roman’kov independently proved that λG,k is an isomorphism for free
nonabelian groups G = Fk of rank k ≥ 2.

3. Equations

We require some results about equations over hyperbolic groups. Throughout this section G
stands for a non-elementary torsion free hyperbolic group; for example a finitely generated
nonabelian free group. Standard references for background on hyperbolic groups are [12, 3,
9, 10].

We state some well-known properties of G as a lemma.

Lemma 3.1. Let G be a torsion-free non-elementary hyperbolic group.

(1) Let H be the centralizer in G of a non-identity elements. Then H is cyclic and malnormal
i.e., Hx ∩H = 1 if x ∈ G−H.

(2) If F is free of finite rank, then the free product G ∗ F is non-elementary torsion-free
hyperbolic.

(3) G satisfies the big powers property [21]. In other words for any sequence v1, . . . , vn ∈ G
such that vi does not commute with vi+1 for 1 ≤ i < n, there exists an integer m such
that

vr11 · · · vrnn ̸= 1 whenever ri ≥ m for all i.

Now we consider equations over G.

Definition 3.2. An equation E(x1, . . . , xm) over G is an element of the free product G ∗X
where X is freely generated by {x1, . . . , xm}. A tuple g1, . . . gm of elements of G is a solution
to E if the unique homomorphism G ∗X → G which is the identity on G and sends each xi
to gi maps E to the identity.

Each equation E(x1, . . . , xm) may be written as E = a0x
d1
i1
a1 · · ·xdnin an, where the aj ’s

are elements of G, and the dj ’s are nonzero integers. Without loss of generality we may
assume that if aj = 1 for some j with 0 < j < n then xij ̸= xij+1 . In addition since
conjugation of an equation does not change the solution set, we may suppose a0 = 1. Thus
we have

E = xd1i1 a1x
d2
i2
a2 · · ·xdnin an with xij ̸= xij+1 if aj = 1. (3.1)
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Theorem 3.3. Let E(x1, . . . , xm) be an equation over a non-elementary torsion-free word-
hyperbolic group G. If all m-tuples in G are solutions to E, then E = 1 in G ∗X.

Proof. We argue by induction on n. The cases n = 0, 1 are left to the reader, so we may
assume n ≥ 2.

By our hypothesis, substituting 1 for all the xj ’s yields a1 · · · an = 1 in G. It follows
that we may rewrite Equation (3.1) as a product of conjugates of powers.

E = xd1i1 a1x
d2
i2
a−1
1 a1a2x

d3
i3
(a1a2)

−1 · · · (a1 · · · an−1)x
dn
in
(a1 · · · an−1)

−1 (3.2)

Define u1(xi1) = xd1i1 , u2(xi2) = a1x
d2
i2
a−1
1 u u3(xi3) = a1a2x

d3
i3
(a1a2)

−1, etc. The group G

satisfies the big powers condition (see Lemma 3.1) hence for substitutions of elements g
rj
ij

∈ G

for xij either
E(gr1i1 , g

r2
i2
, . . . , grnin ) ̸= 1

for all sufficiently large integers rj or for some j < n, uj(gij ) and uj+1(gij+1) commute. In
the first case there are many tuples gr1i1 , g

r2
i2
, . . . , grnin which are not solutions to our equation

E, so we may assume that for some j < n, uj(g
rj
ij
) and uj+1(g

rj+1

ij+1
) commute.

In other words
(a1 · · · aj−1)g

rjdj
ij

(a1 · · · aj−1)
−1

commutes with
(a1 · · · aj)g

rj+1dj+1

ij+1
(a1 · · · aj)−1

whence g
rjdj
ij

commutes with ajg
rj+1dj+1

ij+1
a−1
j . By Lemma 3.1, the group G is commutative

transitive (since all proper centralizers are commutative) hence gij and ajgij+1a
−1
j commute.

But clearly we can choose gij ∈ G such that gij and ajgij+1a
−1
j do not commute. Thus there

is a substitution xi → grii which does not yield 1 in the equation E = 1.

Remark 3.4. Theorem 3.3 shows that, in terms of algebraic geometry over groups, the
radical of the affine space Gn for non-elementary torsion-free hyperbolic groups G is trivial.

Remark 3.5. The proof of Theorem 3.3 shows that the result holds for any group G that
satisfy the following conditions:

1) G is CSA, i.e., centralizers of non-trivial elements are abelian and malnormal; there are
many such groups which are not hyperbolic (see, for example, [20, 11, 13])

2) G satisfies the big powers condition (see examples in [21, 15]);
3) For any finite subset of non-trivial elements A ⊆ G, there is an element g ∈ G such that

[a, g] ̸= 1 for every a ∈ A.

4. Proof of Theorem 2.1

Notation. When the value of k is irrelevant, we will write FAC(G) in place of FACk(G).
In addition we will abbreviate (u1, . . . , uk) to u⃗.

Notice that for each α ∈ FAC(G), α(u⃗) is computed by a fixed sequence of elementary
AC-moves on u⃗. Performing the same sequence on a tuple of indeterminants x⃗ = (x1, . . . , xk)
yields group words (W1, . . . ,Wk) in the free product G ∗X. Here X is the free group over
{x1, . . . , xk}. We record this observation as a lemma.
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Lemma 4.1. For every α ∈ FAC(G) there are group words Wi(x1, . . . , xk) for 1 ≤ i ≤ k
over indeterminants x1, . . . , xk, such that

α(u1, . . . , uk) = (W1(u1, . . . , uk), . . . ,Wk(u1, . . . , uk)).

Let G be a torsion-free non-elementary hyperbolic group, and suppose α ∈ FAC(G)
fixes all elements in the orbit of u⃗ = (u1, . . . , uk). Without loss of generality we may assume
ui ≠ 1 for all i. It suffices to show that if α ∈ FAC(G) fixes all conjugates of u⃗, i.e., all

sequences (uh1
1 , . . . , uhk

k ) as the hi’s run over all elements of G, then α = 1.
By Lemma 4.1 there are group words Wi(x1, . . . , xk) over G ∗X such that

α(v1, . . . , vk) = (W1(v1, . . . , vk), . . . ,Wk(v1, . . . , vk))

for all v⃗ ∈ Gk. By hypothesis Wi(u
d1
1 , . . . , udkk ) = udii for all d1, . . . , dk ∈ G.

Since G ∗X is non-elementary torsion-free hyperbolic, it follows from Theorem 3.3 that

Wi(u
x1
1 , . . . , uxk

k ) = uxi
i in G ∗X. (4.1)

By properties of free products, there is an endomomorphism f : G ∗X → G ∗X which is
the identity on G and maps each xi to uxi

i . A straightforward argument shows that f is
injective. Hence Equation 4.1 implies Wi(x1, . . . , xk) = xi. Thus α = 1 as desired.

5. Open Problems

Here we collect some open problems on AC-groups ACk(G). Some of them are new, others
appear in various presentations, preprints, or papers.

General Problem 2. Study groups FACk(G) and ACk(G) for different platform groups
G.

More particular problems are listed below.

Problem 5.1. Which groups AC(G) are finitely presentable?

Note, that in [25] Roman’kov showed that the group AC2(F2), where F2 is a free group
of rank 2, is not finitely presented. This brings the following question for free groups Fk of
rank k.

Problem 5.2. Is it true that the groups ACk(Fk) are finitely presented for k ≥ 3?

Problem 5.3. Does the conclusion of Theorem 2.1 hold for partially commutative groups?

Problem 5.4. Find “good” (quasi-geodesic) normal forms of elements in ACk(Fk)

A solution to Problem 5.4 will enhance efficacy of search for counterexamples to the
ACC.s

Problem 5.5. For which k does the group ACk(Fk) have Kazhdan property (T)?

Positive solution to this problem would explain why the analog of the product replacement
algorithm for generators of normal subgroups in black-box groups works rather well (see [6]).
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[8] R. G. Burns and O. Macedońska. Balanced presentations of the trivial group. Bull. London Math. Soc.,
25(6):513–526, 1993.

[9] M. Coornaert, T. Delzant, and A. Papadopoulos. Géométrie et théorie des groupes, volume 1441 of
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