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Abstract. We study both the Submonoid Membership problem (SMM) and the Rational
Subset Membership problem (RatM) in finitely generated nilpotent groups. We give two
reductions with important applications:

• The SMM in any nilpotent group can be reduced to the RatM in smaller groups. As
a corollary, we prove the existence of a group with decidable SMM and undecidable
RatM, answering a question of Lohrey and Steinberg.

• The Rational Subset Membership problem in H3(Z) can be reduced to the Knapsack
problem in the same group, and is therefore decidable.

We deduce that the filiform 3-step nilpotent group has decidable Submonoid Membership.

Decision problems are central motivating questions in combinatorial group theory. The
first example is the Word Problem, introduced by Dehn in 1910 [6]. For matrix groups,
the first hard problem is the Subgroup Membership problem. With it came one of the
first undecidability results in SL4(Z) [24], and also some positive results in nilpotent and
polycyclic groups [22]. This paper focuses on the next two decision problems in line, namely
the (uniform) Submonoid and Rational Subset Membership problems. For a group G (given
as a matrix group, or endowed with a finite generating set S) we attempt to produce
algorithms with the following specifications:

Submonoid Membership problem (SMM(G))

Input: Elements g and g1, g2, . . . , gn ∈ G (defined as matrices or words over S).

Output: Decide whether g belongs to the submonoid {g1, g2, . . . , gn}∗.

Rational Subset Membership problem (RatM(G))

Input: An element g ∈ G (given either as a matrix or as a word over S) and a rational
subset R ⊆ G (defined by a finite state automaton, labeled by elements in G)

Output: Decide whether g ∈ R.
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Both problems are known to be decidable for a few classes of groups, including free groups
[1] and virtually abelian groups [14]. We suggest to have a look at the surveys [16, 7, 18] for
a more exhaustive picture.

Finally, we recall the Knapsack Problem which plays a key role in our paper. This problem
is a special case of Rational Subset Membership (see Figure 1), introduced in [27].

Knapsack problem (KS(G))

Input: Elements g and g1, g2, . . . , gn ∈ G (defined as matrices or words over S).

Output: Decide whether g ∈ {g1}∗ {g2}∗ . . . {gn}∗.

This sub-problem is known to be decidable in a much larger class of group. This includes
hyperbolic groups [27] and co-context-free groups [15].
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Figure 1. Finite state automaton relative to the Knapsack problem

Finitely generated submonoids are rational, hence the decidability of RatM(G) implies the
decidability of SMM(G). A natural question is whether the reciprocal holds:

Question (Lohrey-Steinberg). Does there exist a finitely generated group with decidable
Submonoid Membership and undecidable Rational Subset Membership?

Lohrey and Steinberg proved that both problems are recursively equivalent in RAAGs [19]
and infinitely-ended groups [20]. However, they conjecture a positive answer for more general
groups. They also note that the existence of such a group is equivalent to the property
“SMM(G) is decidable” not being closed under free products [20, §4].

For (non virtually abelian) nilpotent groups, the full picture is not clear yet.

• The Knapsack problem (hence Rational Subset Membership) is undecidable in large
nilpotent groups, most notably H3(Z)k and N2,k (the free 2-step nilpotent group of
rank k) for k ≫ 1. [17, 15, 25]

• Submonoid Membership is undecidable in H3(Z)k for k ≫ 1. [30]

Both results rely on the negative solution to Hilbert’s 10th problem: there exists no algorithm
deciding whether a Diophantine equation (or system of equations) admits an integer solution
[23]. On the positive side, the list of results is even shorter:

• The Knapsack problem is decidable in H2m+1(Z) for all m ⩾ 1 [15], where

H2m+1(Z) =


1 a c

Im bt

1

 ∣∣∣∣∣∣ a, b ∈ Zm, c ∈ Z

 ⩽ SLm(Z).

• Colcombet, Ouaknine, Semukhin and Worrell proved that Submonoid Membership is
decidable in H2m+1(Z) for all m ⩾ 1. [5]
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Note that the former relies on deep results on quadratic Diophantine equations [13], whereas
the latter is elementary. This points to RatM(G) being harder than SMM(G), hence the
hope to separate both problems within the class of nilpotent groups.

In the first part of the paper, we re-interpret and extend Colcombet et al.’s result:

Theorem 2.6. There exists an algorithm with the following specifications

Input: A finitely presented nilpotent group G (given by a finite presentation), a finite
set S ⊂ G and an element g ∈ G (given as words).

Output: Finitely many instances gi
?
∈ Ri of Rational Subset Membership in a subgroup

H ⩽ G such that g ∈ S∗ if and only if gi ∈ Ri for some i.

Moreover, it solves these instances if h([H, H]) = h([G, G]), with h the Hirsch length.

Note that, if h([G, G]) ⩽ 1, e.g. for H2m+1(Z), then either h([H, H]) = h([G, G]) or H
is virtually abelian. In both cases the instances of RatM(H) are decidable. In a more
conceptual direction, Theorem 2.6 confirms the conjecture of Lohrey and Steinberg:

Corollary 2.8. There exists a nilpotent group of class 2 with decidable Submonoid Member-
ship and undecidable Rational Subset Membership.

Remark. It is crucial to consider the uniform version of the Rational Subset Membership
in the previous result. Indeed the instances of RatM(H) we need to solve will depend on
g ∈ G, even for a fixed submonoid S∗ ⊆ G.

The second part of the paper focuses on the discrete Heisenberg group
H3(Z) ≃

〈
x, y

∣∣ [x, [x, y]] = [y, [x, y]] = 1
〉

.

The Heisenberg group is the smallest (non virtually-abelian) f.g. nilpotent group, in the
sense that it embeds in all such groups. Our main result is the following:

Theorem 3.9. H3(Z) has decidable Rational Subset Membership.

Combining this result with Theorem 2.6, we get the following:

Corollary 0.1. The filiform 3-step nilpotent group (also called “the Engel group”)
E =

〈
x, y1, y2, y3

∣∣ [x, yi] = yi+1 for i = 1, 2; [x, y3] = [yi, yj ] = 1 for i, j = 1, 2, 3
〉

has decidable Submonoid Membership.

Indeed, this nilpotent group has Hirsch length h(E) = 4, hence any infinite-index subgroup
admits a finite-index subgroup isomorphic to 1, Z, Z2, Z3 or H3(Z). It can be seen as a
subgroup of the unitriangular matrices UT4(Z):

E ≃ Z3 ⋊X Z =
{(

Xn y
0 1

) ∣∣∣∣ n ∈ Z, y ∈ Z3
}

where X =

1 1 0
0 1 1
0 0 1

 .
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We expect that some extension of Theorem 3.9 holds:

Conjecture A. H2m+1(Z) has decidable Rational Subset Membership for all m ⩾ 1.

In turn, this would imply that Submonoid Membership is decidable in f.g. nilpotent groups
G satisfying h([G, G]) ⩽ 2, or commensurable to N2,3 × Zn or N3,2 × Zn. (Those groups
satisfy h([G, G]) = 3, and contain no subgroup with h([H, H]) = 2.)

The proof of Theorem 3.9 relies on a technical proposition. We reduce the problem to the
class of bounded regular languages, defined by the following equivalent conditions:

Theorem (See eg. [36]). Fix L ⊆ Σ⋆ a regular language. The following are equivalent:

(a) L has polynomial growth: βL(n) := #L ∩ Σ⩽n ⪯ nd for some d ⩾ 0.

(b) L is bounded, i.e., L ⊆ {w1}∗{w2}∗ . . . {wr}∗ for some wi ∈ Σ⋆.

(c) L is a finite union of languages t0 {u1}∗ t1 {u2}∗ t2 . . . {us}∗ ts with ti, ui ∈ Σ⋆.

More precisely, we prove the following result:

Proposition 3.3. Let R ⊆ H3(Z) be a rational subset, i.e., R = ev(L) for some regular
language L ⊆ G⋆ (see §1.1 for definitions). There exists a bounded regular language L′ ⊂ G⋆

such that R = ev(L′). Moreover, L′ can be effectively computed from L.

This essentially reduces RatM(H3(Z)) to KS(H3(Z)), which is decidable by [15].

Added in proof. A few weeks after this article was first made public, Markus Lohrey told
me about unpublished work of Doron Shafrir (2018) proving that SMM(G) is decidable and
RatM(G) is undecidable for G = A ≀ Z2, with A ̸= 1 finite abelian. This work has now been
written down in Potthast’s bachelor thesis [28], and generalised by Ruiwen Dong in [8].

Moreover, building on work of Shafrir [33], Dong proved that the decidability of SMM is not
preserved by finite-index overgroups [8]. This leaves open the following basic questions:

Question B. Does there exist a finitely generated group G such that

• SMM(G) is decidable and KS(G) is undecidable?

• RatM(G) (resp. SMM, KS) is decidable and RatM(G×Z) (resp. SMM, KS) is undecidable?

Finally Shafrir proved the above conjecture for rational subsets of a specific shape [32]. This
is sufficient to conclude that SMM(G) is decidable for G nilpotent satisfying h([G, G]) ⩽ 2,
as well as G = N2,3 × Zn and N3,2 × Zn. Extending this result further would require new
ideas. However, we advertise the following problem, which still seems tractable (as the
algorithms proposed in [5] or here do not rely on solving quadratic Diophantine equations).

Problem C. Give an upper bound on the time complexity of SMM(H3(Z)).
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1. Background on rational subsets

1.1. Definition. Fix a group G. An automaton over G is a tuple M = (V, δ, v0, accept) with

- V is a finite set of vertices/states.

- δ ⊂ V × G × V is a finite set of edges/transitions. Each element (u, g, v) ∈ δ should be
thought as an oriented edge u → v with label g.

- v0 ∈ V is the initial/start vertex.

- accept ⊆ V is the set of terminal/accept vertices.

⋆ Each automaton M recognizes a language L(M) ⊆ G⋆, namely the set of words w ∈ G⋆

we can read along (oriented) paths from v0 to some accept vertex.

⋆ There is a natural map ev : G⋆ → G : w 7→ w̄, interpreting each word as a product in G.

⋆ A subset R ⊆ G is rational if there exists an automaton M over G such that ev(L(M)) = R.
The subset R is unambiguously rational if we can moreover ensure that ev : L(M) → R is
bijective. In that case, L(M) is a regular normal form for R.

⋆ An automaton is trim if every vertex p ∈ V lies on a path from v0 to an accept vertex.

⋆ An automaton is deterministic if, for every pair (u, g) ∈ V × G, there exists at most one
v ∈ V such that (u, g, v) ∈ δ. This implies that each w ∈ L is accepted by a unique path.

⋆ Given a word w ∈ G⋆, we denote its length by ℓ(w). Moreover, given S ⊆ G and g ∈ ⟨S⟩,
we define its word length as ∥g∥S := min{ℓ(w) | w ∈ S⋆ such that w̄ = g}.

1.2. Going to subgroups. We state a lemma due to Gilman, himself inspired by Stalling.
We recall the proof since the sets X and L̃ defined in the proof will turn out useful.

Proposition 1.1 ([11, Lemma 5]). Let G be a group and R ⊆ G a rational subset recognized
by an automaton M (over G). Suppose that R sits inside a subgroup H ⩽ G, then

• There exists an H-automaton M̃ recognizing R (that is, R is rational in H). Moreover
M̃ is effectively computable from M .

• If L is a normal form for R, then so is L̃ = L(M̃).

• If L is bounded, then so is L̃.

In particular, from the first point, we may drop the “over G”.

Proof. We start with an automaton M = (V, δ, v0, accept) recognizing R. Using the powerset
construction [29], we may suppose that this automaton is deterministic and trim. Let

X =

t̄ ū t̄−1

∣∣∣∣∣∣ ∃p ∈ V s.t.
t ∈ G⋆ labels a simple path v0 → p
u ∈ G⋆ labels a simple cycle p → p

both paths only intersect at p


Y =

{
ȳ

∣∣ ∃q ∈ accept s.t. y ∈ G⋆ labels a simple path v0 → q
}
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We consider the regular language

L̃ =
{

x1x2 . . . xℓ y ∈ X∗Y

∣∣∣∣∣ ti is a prefix of ti+1ui+1 for 1 ⩽ i ⩽ ℓ − 1
tℓ is a prefix of y, where t̄iūit̄

−1
i = xi

}
which is recognized by the automaton M̃ = (Ṽ , δ̃, ε, { }) with

- Ṽ = {t ∈ G⋆ | ∃p ∈ V s.t. t labels a simple path v0 → p} ⊔ { },

- δ̃ consists of all edges s → t labeled by x ∈ X if x = t̄ ū t̄−1 and s is a prefix of tu,
and all an edge t → labeled by ȳ ∈ Y if t is a prefix of y,

- the empty string ε (which labels the simple path v0 → v0) is the starting vertex,

- and the vertex is the unique accept vertex.

▶ We first prove that ev(L) = ev(L̃).

Any word w ∈ L is accepted by a unique path v0 → v0 in the automaton M . This path can
be decomposed as a product of conjugates tiuit

−1
i , using a loop-erasure algorithm:

w
=

t1

u1

·
t2

u2

·
t3

u3 · y

Figure 2. A path decomposed as a product of “freeze frames” of the loop-erasure algorithm.

The resulting word w̃ = (t̄1ū1t̄−1
1 ) . . . (t̄ℓūℓt̄

−1
ℓ ) · ȳ ∈ L̃ is the decomposition of w. Both w and

its decomposition w̃ evaluate to the same element in G. Moreover, words in L̃ are exactly
decompositions of words in L. This proves that ev(L) = ev(L̃).

▶ We prove that X, Y ⊆ H.

Take x = t̄ ū t̄−1 ∈ X, where t labels a simple path v0 → p and u labels a simple cycle
p → p with t and u only intersecting at p. As the automaton M is trim, there exists a path
p → q ∈ accept labeled by some word v ∈ G⋆. Consider tuv ∈ L and xx2 . . . xℓy ∈ L̃ its
decomposition. Observe that x2 . . . xℓy ∈ L̃ too, so

x = (xx2 . . . xℓy)(x2 . . . xℓy)−1 ∈ R · R−1 ⊆ H.

On the other side, we have Y ⊆ R ⊆ H.

▶ If L is a normal form, then each g ∈ R is represented by a unique word w in L, hence has
a unique representative w̃ in L̃.

▶ Observe that ℓ(w) ⩽ |V | ℓ(w̃) for all w ∈ L (as each letter in w̃ corresponds to a simple
cycle or a simple path in w), hence βL(n) ⪰ βL̃(n). If L is bounded, then L and L̃ have
polynomial growth, hence L̃ is bounded [36].
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Another lemma which complements nicely is the following:

Lemma 1.2. Let G be a group and H ⩽ G is a finite-index subgroup.

(a) If R ⊆ G is rational, then Hg ∩ R is rational for each g ∈ G.

If moreover we are given an automaton M such that R = ev(L(M)) with labels inside a
finite set S ⊆ G, and the Schreier graph Sch(H\G, S), then

(b) we can effectively compute an automaton for Hg ∩ R, and

(c) we can effectively compute
{
Hg ∈ H\G

∣∣ Hg ∩ R ̸= ∅
}

and compute a subset K ⊂ L(M)
consisting of a unique representative for each of these cosets.

Proof. (a-b) Given an automaton for M = (V, δ, v0, accept) for R, we construct the following
automaton recognizing Hg ∩ R:

- V ′ = H\G × V

- v′
0 = (H, v0)

- accept′ = {Hg} × accept

- (Hg1, v1) s→ (Hg2, v2) if and only if Hg1s = Hg2 and v1
s→ v2.

(c) For each coset, one can compute an automaton for Hg ∩ R and then decide if the
intersection is non-empty: does there exist a path v′

0 → accept′? If yes, a representative is
given by w ∈ L(M) labeling the first path found.

Remark 1.3. Whenever G = ⟨A | B⟩ is finitely presented, the Todd-Coxeter algorithm
allows to compute Sch(H\G, S) taking as input S and generators for H (given as words
over A), so Sch(H\G, S) doesn’t need to be part of the input of our algorithm.

1.3. Virtually abelian groups. We recall a result of Eilenberg and Schützenberger.

Theorem 1.4 ([10]). Let G be an abelian group and R be a rational subset, then R is
unambiguously rational. Moreover, given a language L such that ev(L) = R, we can
effectively compute a regular normal form L′ for R.

This result can easily be extended to virtually abelian groups using Lemma 1.2(b).

Corollary 1.5. Any rational subset of a virtually abelian group can be represented by a
bounded regular language L′. Moreover, L′ can be computed effectively.

Proof. Take L′ the normal form from Theorem 1.4, and let S be the (finite) set of elements
appearing as labels on an automaton recognizing L′. Note that ℓ(w) ⩾ ∥w̄∥S for all w ∈ S∗

hence we can compare the volume growth of L′ and (⟨S⟩ , S): we have βL′(n) ⩽ β(⟨S⟩,S)(n),
but ⟨S⟩ is a finitely generated virtually abelian group, hence has polynomial growth, so the
rational language L′ has polynomial growth hence is bounded (see [36]).
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2. Dimension gain for the Submonoid Membership

2.1. Background on nilpotent groups. We first recall the classical notion of Hirsch
length, and some related properties.

Definition 2.1. Let G be a group. The lower central series is the sequence of subgroups
γ1(G) = G, γi+1(G) = [γi(G), G] for all i ⩾ 1

We say that G is nilpotent of class c (or c-step nilpotent) if γc+1(G) = {e}.

Definition 2.2. The Hirsch length of a c-step nilpotent group G is defined as

h(G) =
c∑

i=1
rkQ

(
γi(G)/γi+1(G)

)
.

Proposition 2.3 (Folklore, [31, Exercise 8]). Let G be a finitely generated nilpotent group.

(a) For any exact sequence 1 → N → G → Q → 1, we have h(G) = h(N) + h(Q).

(b) For any group H ⩽ G, we have h(H) ⩽ h(G) with equality if and only if [G : H] < ∞.

(c) Let N2,m be the free 2-step nilpotent group on m generators. Then h(N2,m) = m +
(m

2
)
.

Next we quote a useful result, which can be understood as a discrete version of the Chow-
Rashevskii theorem in sub-Riemannian geometry. This requires a definition/lemma:

Lemma 2.4 (Torsionfree part of the abelianization). Let G be a group, then
[G, G] =

{
g ∈ G

∣∣ ∃n ̸= 0, gn ∈ [G, G]
}

is a characteristic subgroup of G. Moreover, if G is finitely generated, then [G, G] has finite
index inside [G, G], and G/[G, G] ≃ Zr for some r.

Proof. Let τ : G → G/[G, G] be the abelianization map, then torsion elements of G/[G, G]
form a characteristic subgroup T and [G, G] = τ−1(T ). If G is finitely generated, then
G/[G, G] ≃ Zr × T hence [[G, G] : [G, G]] = |T | and G/[G, G] ≃ Zr.

Proposition 2.5 ([3], see also [34]). Consider an infinite, finitely generated nilpotent group
G, and π : G ↠ G/[G, G] ≃ Zr. For any S ⊆ G, the following are equivalent

(a) ConvHull(π(S)) ⊆ Rr contains a ball B(0, ε) for some ε > 0.

(b) For every non-zero homomorphism f : G → R, there exists s ∈ S s.t. f(s) < 0.

(c) The submonoid S∗ is a finite-index subgroup of G.

If S is finite, we can restrict to non-zero homomorphism f : G → Z.
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2.2. Proof of Theorem 2.6. We prove the following algorithmic reduction:

Theorem 2.6. There exists an algorithm with the following specifications:

Input: A finitely presented nilpotent group G, a finite set S ⊂ G, and g ∈ G.

Output: Finitely many instances {gi
?
∈ Ri} of the Rational Subset Membership in a

subgroup H ⩽ G such that g ∈ S∗ if and only if gi ∈ Ri for some i.

Moreover, the algorithm solves these instances if h([H, H]) = h([G, G]).

Proof. First, we may assume eG ∈ S. The proof splits into three steps

(1) We compute the image of S through a map π : G ↠ Zr as in Proposition 2.5. Using
this quotient, we define a subgroup H ⩽ G (depending only on S) and a partition
S = S0 ⊔ S+, looking whether π(s) is invertible or not in π(S)∗ ⩽ Zr for each s ∈ S.

(2) We reduce the problem g ∈ S∗ to finitely many instances of RatM(H).

(3) In the case when h([H, H]) = h([G, G]), we solve the previous instances of RatM(H).

The first step follows [5, Theorem 7] closely, while the last step generalizes “Case II” from
the same proof. The observation of the second step seems new.

▶ First we compute a map π : G → Zr from a presentation for G. We consider the polytope
ConvHull(π(S)) ∋ 0 given by a V-representation (namely, π(S)). We can compute a H-
representation (H for half-space), that is, a finite set of inequalities {fi(v) ⩾ ai | i ∈ I} with
fi : Zr → Z non-zero linear forms and ai ∈ Z such that

ConvHull(π(S)) =
{
v ∈ Rr

∣∣ ∀i ∈ I, fi(v) ⩾ ai
}

.

This is the classical facet enumeration problem. (See [37, Section 1.2] and references therein.)
We compute a maximal linearly independent set {f1, f2, . . . , fs} inside {fi | i ∈ I, ai = 0},
and define a homomorphism f : G → Zs via

f(h) =
(
f1(π(h)), f2(π(h)), . . . , fs(π(h))

)
.

The image of f : G → Zs has finite index (by linear independence), and f(S) ⊂ Zs
⩾0. We

define H = ker f and partition S into S0 = S ∩ H and S+ = S \ H.

Geometric intermezzo: We are looking at the minimal face F of ConvHull(π(S))
containing 0 (i.e., no proper sub-face of F contains 0). This face is given by

F = ConvHull(π(S)) ∩ K = ConvHull(π(S0))
where K =

{
v ∈ Rr

∣∣ fi(v) = 0 for i = 1, 2, . . . , s
}
. The minimality of F can be stated

as “there exists ε > 0 such that B(0, ε) ∩ K ⊂ F”.

▶ There exists only finitely many words w = u1u2 . . . uk ∈ S⋆
+ such that

f(w̄) =
k∑

i=1
f(ui) = f(g)
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(Indeed, k is bounded by the sum of the components of f(g).) For each word w, we need to
decide whether g ∈ S∗

0u1S∗
0u2S∗

0 . . . S∗
0ukS∗

0 . Observe that
S∗

0 · u1S∗
0 · u2S∗

0 · . . . · ukS∗
0 = S∗

0 ·
(
v1S0v−1

1
)∗ ·

(
v2S0v−1

2
)∗ · . . . ·

(
vkS0v−1

k

)∗ · vk

where vi = u1u2 . . . ui. Hence the problem can be restated as

gv−1
k

?
∈ R := S∗

0 ·
(
v1S0v−1

1
)∗ ·

(
v2S0v−1

2
)∗ · . . . ·

(
vkS0v−1

k

)∗ ⊆ H

which is an instance of the Rational Subset Membership Problem in H.

We note that algorithms presented in [21] allow to compute a presentation for H, and then
rewrite all elements gv−1

k ∈ H and visv−1
i ∈ H as words over the corresponding generating

set. (Problems (III), (IV) and (II) in the article.)

▶ We solve the Membership problem under the hypothesis h([G, G]) = h([H, H]).

Observe that [G, G] = [H, H]. Indeed, we have [G, G] ⩽ H as H is the kernel of f : G → Zs

with Zs torsionfree abelian. Moreover Proposition 2.3(b) and Lemma 2.4 imply that

m =
[
[G, G] : [H, H]

]
=

[
[G, G] : [G, G]

][
[G, G] : [H, H]

]
< ∞.

For every g ∈ [G, G], we have gm! ∈ [H, H] hence g ∈ [H, H], proving the observation. In
particular, we can identify the quotient H/[H, H] = H/[G, G] = π(H).

Condition (a) of Proposition 2.5 (for H and S0) now reads “F = ConvHull(π(S0)) contains
a ball B(0, ε) ∩ K”, which holds by minimality of F . We conclude that S∗

0 is a finite-index
subgroup of H. Finally, the problem can be restated as

⟨S0⟩ gv−1
k ∩

(
v1S0v−1

1
)∗ ·

(
v2S0v−1

2
)∗ · . . . ·

(
vkS0v−1

k

)∗ ?= ∅
which is easily decided using Lemma 1.2(c).

2.3. Proof of Theorem 2.8. We give a lemma on abstract commensurability classes of
subgroups of N2,m × Zn. Some ideas can already be found in [12, Theorem 7].

Lemma 2.7. Any subgroup H ⩽ N2,m × Zn admits a finite-index subgroup H ′ ⊴ H

isomorphic to N2,k × Zℓ for some k ⩽ m and ℓ ⩽
(m

2
)

−
(k

2
)

+ n.

Proof. Let G = N2,m ×Zn and fix a subgroup H ⩽ G. Consider the composition α = α2 ◦ α1
where α1 is the projection on the first factor, and α2 is the abelianization map:

N2,m × Zn N2,m Zmα1 α2

The image α(H) ⩽ Zm is isomorphic to Zk for some k ⩽ m. Fix g1, . . . , gk ∈ H such that
{α(g1), . . . , α(gk)} is a basis for α(H).
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Claim 1. ⟨g1, . . . , gk⟩ ≃ N2,k and {g1, . . . , gk} is a basis.

Observe that the projections of α1(g1), . . . , α1(gk) ∈ N2,m in Zm are linearly independent,
hence they generate a subgroup isomorphic to N2,k as a basis (see [26, Theorem 1.3]).
Moreover, since N2,k is relatively free in the variety of 2-step nilpotent groups and
N2,m × Zn is 2-step nilpotent, we can define a morphism α1(gi) 7→ gi, proving that the
restriction α1|⟨g1,...,gk⟩ is invertible, hence the claim.

Observe that K = ker α is the center of G, in particular is abelian. We have

K K/
(
⟨g1, . . . , gk⟩ ∩ K

)
T × Z(m

2 )−(k
2)+n Z(m

2 )−(k
2)+n∼

where T is some finite abelian group. Indeed K ≃ Z(m
2 )+n and ⟨g1, . . . , gk⟩ ∩ K ≃ Z(k

2). We
denote the whole composition by β, and the composition of the first two arrows by γ.

The image β(H ∩ K) ⩽ Z(m
2 )−(k

2)+n is isomorphic to Zℓ for some ℓ ⩽
(m

2
)

−
(k

2
)

+ n. Fix
h1, . . . , hℓ ∈ H ∩ K such that {β(h1), . . . , β(hℓ)} is a basis of β(H ∩ K).

Claim 2. Since K is abelian, β : ⟨h1, . . . , hℓ⟩ ↠ β(H ∩ K) ≃ Zℓ is an isomorphism.

Claim 3. We have H ′ := ⟨g1, . . . , gk, h1, . . . , hℓ⟩ ≃ N2,k × Zℓ. It suffices to check that

• ⟨g1, . . . , gk⟩ and ⟨h1, . . . , hℓ⟩ commutes, which is true as ⟨h1, . . . , hℓ⟩ ⩽ K = Z(G).

• ⟨g1, . . . , gk⟩∩⟨h1, . . . , hℓ⟩ = {e}, which is true as restriction β|⟨g1,...,gk⟩∩K is zero while
the restriction β|⟨h1,...,hℓ⟩ is injective.

Claim 4. H ′ ⊴ H and H/H ′ is finite.

Recall that K = ker α is central hence
∀g, g′, h, h′ ∈ G,

(
α(g) = α(g′) and α(h) = α(h′)

)
=⇒ [g, h] = [g′, h′].

Therefore α(H) = α(H ′) implies [H, H] = [H ′, H ′]. It follows that H ′ ⊴ H (as any
subgroup H ′ ⩽ H containing [H, H] is normal in H). Moreover,

H/H ′ ≃
(
H ∩ K

)
/
(
H ′ ∩ K

)
≃ γ(H ∩ K)/γ(H ′ ∩ K) ≃ γ(H ∩ K) ∩ T

using the Nine lemma, the third isomorphism theorem, and the Nine lemma again.
1 1 1

1 H ′ ∩ K H ′ α(H ′) 1

1 H ∩ K H α(H) 1

1 (H ∩ K)/(H ′ ∩ K) H/H ′ 1

1 1

≀

∼

1 1

1 γ(H ′ ∩ K) β(H ′ ∩ K) 1

1 γ(H ∩ K) ∩ T γ(H ∩ K) β(H ∩ K) 1

1 γ(H ∩ K) ∩ T γ(H ∩ K)/γ(H ′ ∩ K) 1

1 1

∼

≀

∼

It should be noted that everything is effectively computable from generators for H.



2:12 C. Bodart Vol. 17:1

Finally, we deduce the existence of a group separating SMM(G) and RatM(G):

Corollary 2.8. There exist m, n ⩾ 0 such that N2,m × Zn has decidable Submonoid Mem-
bership Problem and undecidable Rational Subset Membership Problem.

Proof. Consider a group G = N2,m ×Zn with undecidable RatM(G) and m minimal. Such a
group does exist by [15], and [25] even proves that m ⩽ 26.

We prove that SMM(G) is decidable. Using Theorem 2.6, any instance of SMM(G) reduces
to finitely many instances of RatM(H) for a subgroup H ⩽ G with h([H, H]) < h([G, G]).
However Lemma 2.7 tells us such subgroups admit finite-index subgroups H ′ ≃ N2,k × Zℓ

with k < m and ℓ ⩽
(m

2
)

−
(k

2
)

+ n. In turn, RatM(H) reduces to RatM(N2,k × Zℓ) using
Lemma 1.2(a-b) and Proposition 1.1 (see also [14]), and the latter is decidable as k < m.

Remark 2.9. It is important that subgroups of N2,m × Zn fall into finitely many abstract
commensurability classes, otherwise RatM(H) could be decidable for each group H without
any uniform algorithm working for all H. Here, we can compute the values of k and ℓ, and
decide which of the finitely many algorithms to apply.

3. Reduction to bounded regular languages

3.1. The Heisenberg group. We recall the exponential coordinates on H3(Z), and a
geometrical interpretation for them. The group H3(Z) is generated by the matrices

x =

1 1 0
0 1 0
0 0 1

 and y =

1 0 0
0 1 1
0 0 1

 .

Another notable element is z := [x, y] = xyx−1y−1. For a general element

g =

1 a c
0 1 b
0 0 1

 ∈ H3(Z),

we define ĝ = (a, b) ∈ Z2 and A(g) = c − 1
2ab. Note that π : g 7→ ĝ is the abelianization map.

For instance ẑ = 0 (since z ∈ [G, G]) and A(z) = 1.

Given a product g = s1s2 . . . sn with si ∈ {x±, y±}, the coordinates ĝ and A(g) can be
interpreted as follows: we consider the path γg in Z2, starting from 0, where the i-th step
goes in left, right, up or down direction depending if si = x, x−1, y or y−1. Then

• ĝ is the endpoint of this path, and

• A(g) is the algebraic area (or balayage area) of the curve
obtained by closing the path by a straight segment from
ĝ to 0. Each point of the plane is weighted according to
the winding number of the path around it.

The adjacent figure is the path representing the product
g = y−1x3yx−1y−2x3y3x−3y3x2, with exponential coordinates
given by ĝ = (4, 4) and A(g) = 12.

+2

+1
0

−1
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Lemma 3.1 (See [2, Proposition 4.1]). The exponential coordinates satisfy

ĝh = ĝ + ĥ and A(gh) = A(g) + A(h) + 1
2 det(ĝ; ĥ).

As a corollary, we also have

A(g1g2 . . . gn) = 1
2

∑
i<j

det(ĝi; ĝj) +
n∑

i=1
A(gi) and [g, h] = zdet(ĝ;ĥ).

Lemma 3.2. Let N ⊴ G = H3(Z) be a finite-index normal subgroup. Fix a, b ∈ N such
that π(N) = ⟨â, b̂⟩ and d ∈ Z>0 such that N ∩ [G, G] = ⟨zd⟩. Two elements g, h ∈ H3(Z) lie
in the same N -coset if and only if the following conditions hold:

(1) ĝ − ĥ ∈ ⟨â, b̂⟩, say ĝ − ĥ = mâ + nb̂ with m, n ∈ Z.

(2) A(g) ≡ A(h · ambn) = A(h) + A(ambn) + 1
2 det(ĥ; mâ + nb̂) (mod d).

In particular, if g = h in G/(N ∩ [G, G]) (i.e., m = n = 0), then A(g) − A(h) ∈ dZ. For
N = G, this means that A(g) − A(h) ∈ Z as soon as ĝ = ĥ.

Proof. Condition (1) is clearly necessary. Supposing (1), we have ambn ∈ N and g[G, G] =
hambn[G, G], hence gN = hN is equivalent to g⟨zd⟩ = hambn⟨zd⟩, which is condition (2).

3.2. Reduction to rational submonoids. The goal of §3.2, §3.3 is to prove the following:

Proposition 3.3. Let R ⊆ H3(Z) be a rational subset, i.e., R = ev(L) for some regular
language L ⊆ G⋆. There exists a bounded regular language L′ ⊂ G⋆ such that R = ev(L′).
Moreover, an automaton for L′ can be effectively computed from an automaton for L.

We begin by reducing to the case start = accept = {v} (i.e., to the case of rational
submonoids). For this step, G can still be an arbitrary group. We consider a general rational
subset R = ev(L), where L is accepted by a automaton M = (V, δ, v0, accept) over G.

▶ Using a loop-erasure algorithm, we decompose each word w ∈ L as
w = w0s1w1s2 . . . sℓwℓ

where s1, s2, . . . , sℓ ∈ G label a simple path v0
s1→ v1

s2→ . . .
sℓ→ vℓ with vℓ ∈ accept, and each

wi ∈ G⋆ labels a cycle vi → vi. We proceed as follows: start at the vertex v0 and skip
directly to the last visit of v0, hence bypassing a (possibly empty) cycle w0 from v0 to v0,
then go to the next vertex. Each time you enter a new vertex vi, skip directly to the last
visit of vi (bypassing another cycle), then keep going. (See Figure 3.)

w s1s2 . . . sℓw0

w1 w2

Figure 3. A path in the automaton and its decomposition
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▶ It follows that
L =

⋃
Lv0→v0 · s1 · Lv1→v1 · s2 · . . . · sℓ · Lvℓ→vℓ

where the union is taken over simple paths v0
s1→ v1

s2→ . . .
sℓ→ vℓ with vℓ ∈ accept, and Lv→v

is the language of words labeling cycles v → v. The union is finite, and each language Lv→v

is regular (accepted by the automaton Mv→v = (V, δ, v, {v})).

If we managed to find bounded regular languages L′
v→v such that ev(L′

v→v) = ev(Lv→v), we
would be done with the language

L′ =
⋃

s1s2...sℓ

L′
v0→v0 · s1 · L′

v1→v1 · s2 · . . . · sℓ · L′
vℓ→vℓ

which is bounded, regular, and evaluates to R. This is the subject of the next subsection.

3.3. Main discussion. We now fix G = H3(Z), and consider a trim automaton M =
(V, δ, v, {v}) recognizing a language L and a rational subset R. In particular L is a submonoid
of G⋆, and R is a submonoid of H3(Z). As in Proposition 1.1, let

X =

t̄ ū t̄−1

∣∣∣∣∣∣ ∃p ∈ V s.t.
t ∈ G⋆ labels a simple path v → p
u ∈ G⋆ labels a simple cycle p → p

both paths only intersect at p

 .

We will work with both L and L̃ defined in Proposition 1.1. (Note that Y = {ε}.)

Let π : H3(Z) ↠ Z2 : g 7→ ĝ be the abelianization map. We discuss depending on the subset
positively spanned by π(X), i.e., depending on {λ1y1 + . . . + λryr | λi ∈ R⩾0, yi ∈ π(X)}.

(1) If π(X) is included in a line.

(2) If π(X) spans the whole plane (i.e., 0 belong to the interior of ConvHull(π(X))).

(3) If π(X) spans a half-plane.

(4) If π(X) spans a cone.

In each case, we provide an (effectively computable) bounded regular language L′ such that
ev(L′) = ev(L). Case (4) will take most of our time.

3.3.1. π(X) spans {0}, a ray or a line. The subgroup ⟨X⟩ is abelian (isomorphic to {e}, Z
or Z2, but one might as well work in ZX). As R is rational in ⟨X⟩ (Proposition 1.1), we can
compute a bounded regular language L′ ⊂ ⟨X⟩⋆ representing R (Corollary 1.5).

3.3.2. π(X) spans the whole plane. For each x = tut
−1 ∈ X and m ∈ Z⩾0, the set R contains

xm ev(twp→v) = ev(tumwp→v), where wp→v labels a path p → v. Note that
π(xm ev(twp→v)) = mπ(x) + π(ev(twp→v)) = mπ(x) + O(1).

It follows that ConvHull(π(R)) = R2, hence R is a subgroup by Proposition 2.5. More
precisely R = ⟨X⟩ since X ⊆ R · R−1 (proof of Proposition 1.1). We compute
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• a, b ∈ ⟨X⟩ such that π(a), π(b) form a basis of π(⟨X⟩) ⩽ Z2. These can be found using
Gaussian elimination on the matrix with vectors π(x) (x ∈ X) as rows.

• zd ∈ ⟨X⟩ such zd is a basis of ⟨X⟩ ∩ [G, G]. (d is the smallest positive integer such
that zd ∈ ⟨X⟩. Check if z, z2, . . . belong to ⟨X⟩, for instance using the solution to the
Subgroup Membership [22]. The algorithm terminates since zdet(π(a);π(b)) = [a, b] ∈ ⟨X⟩.)

These two conditions mean that {a, b, zd} is a Mal’cev basis of ⟨X⟩. We deduce a regular
normal form L′ = {apbq(zd)r | p, q, r ∈ Z} ⊂ G⋆ for R.

3.3.3. π(X) spans a half-plane. By hypothesis, we can find

• s̄ ā s̄−1 and t̄ c̄ t̄−1 ∈ X such that â, 0 and ĉ ∈ Z2 are on a line, in that order. We also
fix s̃ ∈ G⋆ labeling a path from the endpoint of s to v. Define t̃ ∈ G⋆ similarly.

• b ∈ L such that b̂ doesn’t lie on the same line. (Take r̄ ūr̄−1 ∈ X such that û doesn’t lie
on the line. Fix r̃ ∈ G⋆ from the endpoint of r to v, and take b = rur̃.)

For each v ∈ Z2, there exists unique α(v), β(v) ∈ Q such that v = α(v) · â + β(v) · b̂.

Lemma 3.4. There exists a computable K ⩾ 0 such that, if g ∈ R satisfies β(ĝ) ⩾ K, then
g can be written as

g = ev
(
san1 s̃ · bm · tcn2 t̃ · bm · san3 s̃ · bn4 · w

)
where m is fixed, n1, n2, n3, n4 ∈ Z⩾0, and w varies in a fixed finite subset of L.

Proof. Let h(n1, n2, n3, n4) = ev
(
san1 s̃ · bm · tcn2 t̃ · bm · san3 s̃ · bn4

)
. We fix p, q ∈ Z>0 such

that pâ + qĉ = 0. In particular, we have
ĥ(n1 + p, n2 + q, n3, n4) = ĥ(n1, n2, n3, n4) = ĥ(n1, n2 + q, n3 + p, n4). (3.1)

Let us see how the area changes under the same transformations:

A
(
h(n1 + p, n2 + q, n3, n4)

)
− A

(
h(n1, n2, n3, n4)

)
= pA(a) + qA(c) + det

(
pâ; mb̂ + π(s̃t)

)︸ ︷︷ ︸
d+(m)

A
(
h(n1, n2 + q, n3 + p, n4)

)
− A

(
h(n1, n2, n3, n4)

)
= pA(a) + qA(c) − det

(
pâ; mb̂ + π(t̃s)

)︸ ︷︷ ︸
d−(m)

Equation (3.1) and Lemma 3.2 imply that d+(m) and d−(m) are integers. We fix m large
enough so that d+(m) · d−(m) < 0 and fix d = gcd(d+(m), d−(m)).

The subgroup N :=
〈
ād, b̄d, c̄d, zd

〉
has finite index (Proposition 2.5). Moreover

∀g ∈ N, g′ ∈ G, [g, g′] = zdet(ĝ;ĝ′) ∈ ⟨zd⟩

as ĝ ∈ d⟨â, b̂, ĉ⟩. It follows that [N, G] ⩽ N : the subgroup N is normal. The quotient Cayley
graph can be constructed using Lemma 3.2. Using Lemma 1.2, we can construct a finite
subset K ⊂ L of representatives for each coset of N intersecting R.

We take K = β(π(h(0, 0, 0, 0))) + maxw∈K β(ŵ). Recall that R is a submonoid in G, hence
its image in the finite quotient G/N is a subgroup. It follows that, for any g ∈ R, we can
find w ∈ K such that w̄ = h(0, 0, 0, 0)−1g in G/N (as g, h(0, 0, 0, 0) ∈ R).
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If furthermore β(ĝ) ⩾ K, there exists m1, m2, m4 ∈ Z⩾0 such that
π(g) = π

(
h(0, 0, 0, 0)

)
+ d

(
m1π(ā) + m2π(c̄) + m4π(b̄)

)
+ π(w̄)

= π
(
h(dm1, dm2, 0, dm4)w̄

)
(We can ensure m1, m2 ⩾ 0 as π(ā), π(c̄) are colinear, in opposite direction. Moreover,
dm4 = β(ĝ) − β(π(h(0, 0, 0, 0))) − β(ŵ) ⩾ β(ĝ) − K ⩾ 0.) Since g, h(0, 0, 0, 0)w̄ and
h(dm1, dm2, 0, dm3)w̄ lie in the same coset of N and ĝ = ĥ(dm1, dm2, 0, dm3), we have

A(g) ≡ A
(
h(dm1, dm2, 0, dm4)w̄

)
(mod d)

(Lemma 3.2). Using the two transformations described above, we can find n1, n2, n3, n4 ∈ Z⩾0
such that g = h(n1, n2, n3, n4)w̄.

Finally, we can decompose into two (effectively computable) regular languages
L = {w ∈ L | β(ŵ) ⩾ K} ⊔ {w ∈ L | β(ŵ) < K} =: Lreg ⊔ Labn.

• The first term can be replaced by a bounded regular language
L′

reg = {san1 s̃ · bm · tcn2 t̃ · bm · san3 s̃ · bn4 · w | w ∈ K, n1, n2, n3, n4 ∈ Z⩾0} ⊆ L.

Using Lemma 3.4, we have ev(Lreg) ⊆ ev(L′
reg) ⊆ ev(L) = R.

• For the second term, we compute a trim automaton for Labn and compute the set
X associated to each strongly connected component. For each component, π(X) is
contained in the line through 0 and π(ā). (Otherwise we would be able to pump along a
cycle u for which β(û) > 0 hence produce words w ∈ Labn with β(ŵ) arbitrarily large.)

We can therefore apply the arguments of §3.2 and §3.3.1 to get a bounded regular
language L′

abn such that ev(Labn) = ev(L′
abn).

The language we are looking for is L′ = L′
reg ∪ L′

abn.

3.3.4. π(X) spans a cone. We construct a bounded regular language L′
+ such that

{g ∈ ev(L) | A(g) ⩾ 0} ⊆ ev(L′
+) ⊆ ev(L).

Obviously, we can do the same thing for elements of negative area, hence taking the union
of both languages gives the desired bounded regular language L′.

Consider

• tat−1 with t a simple path from v to some p, and a a simple loop from p to p such that
π(ā) belongs to the lower side of the cone, and A(tat−1)

∥π(a)∥ is maximized, where ∥ · ∥ is your
favorite norm on R2. We also fix t̃ ∈ G⋆ labeling a path back from p to v.

• s−1bs with s a simple path from some q to v, and b a simple loop from q to q such that
π(b̄) belongs to the upper side of the cone, and A(s−1bs)

∥π(b)∥ is maximized. We also fix s̃ ∈ G⋆

labeling a path from v to q.
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For each v ∈ Z2, there exists unique α(v), β(v) ∈ Q such that v = α(v) · â + β(v) · b̂.
Moreover, v belongs to the cone if and only if α(v) ⩾ 0 and β(v) ⩾ 0.

3.3.4.i. There does not exist x ∈ X such that π(x) = 0 and A(x) > 0.

This is the difficult case. If ĝ is far from the border of the cone, and A(g) is far from its
maximum (for a fixed value of ĝ), then there is enough leeway to find a word representing g
in a bounded sub-language of L which we are going to specify.

Lemma 3.5. There exist computable K, m ⩾ 0 such that, if g ∈ R satisfies
0 ⩽ A(g) ⩽ 1

2 det(â; b̂) · α(ĝ)β(ĝ) + A(tat−1) · α(ĝ) + A(s−1bs) · β(ĝ) − K,

α(ĝ) ⩾ K and β(ĝ) ⩾ K,

then g can be written as
g = ev

(
tan1 t̃ · s̃bn2s · tan3 t̃ · w · s̃bp1s · tat̃ · s̃bp2s · . . . · tat̃ · s̃bpms

)
where n1, n2, n3, p1, p2, . . . , pm vary in Z⩾0 and w varies in a fixed finite subset of L.

Proof. Let
h(n1, n2, n3; w; p1, . . . , pm) = ev

(
tan1 t̃ · s̃bn2s · tan3 t̃ · w · s̃bp1s · tat̃ · s̃bp2s · . . . · tat̃ · s̃bpms

)
.

The operation (pi, pi+1) → (pi + 1, pi+1 − 1) preserves ĥ, and decreases the area by
A

(
h(. . . , pi, pi+1, . . .)

)
− A

(
h(. . . , pi + 1, pi+1 − 1, . . .)

)
= det

(
π(s · tat̃ · s̃); b̂

)
.

Note that stt̃s̃ labels a cycle in the automaton, so α(π(stt̃s̃)) ⩾ 0. Let
d = det

(
π(s · tat̃ · s̃); b̂

)
=

(
1 + α(π(stt̃s̃))

)
· det

(
â; b̂

)
⩾ det

(
â; b̂

)
> 0.

We also fix m = 2d + 1. We consider N = ⟨ād, b̄d, zd⟩. Using Lemma 1.2(c), we compute a
finite set K ⊂ L containing a representative for each coset of N intersecting R.

For each g ∈ R satisfying the condition from Lemma 3.5, we find parameters so that
h(n1, n2, n3; w; p1, . . . , pm) = g. We split this into four steps:

(1) We find w ∈ K such that g = h(0, 0, 0; w; 0, . . . , 0) in G/N .

(2) For K computably large enough, we find N1, Pm ⩾ 0 such that
g = h(N1, 0, 0; w; 0, . . . , 0, Pm)

in G/(N ∩ [G, G]). Moreover A
(
h(N1, 0, 0; w; 0, . . . , 0, Pm)

)
− A(g) ⩾ 0.

(3) For K large enough, we find n1, n2, n3, pm ⩾ 0 with n2 ⩽ 3
5β(ĝ) and

g = h(n1, n2, n3; w; 0, . . . , 0, pm)
in G/(N ∩ [G, G]). Moreover

0 ⩽ A(h(n1, n2, n3; w; 0, . . . , 0, pm)) − A(g) ⩽ d

(3
5β(ĝ) + β(π(t̃s̃st))

)
det(â; b̂).

(4) For K large enough, we find p1, . . . , pm ⩾ 0 such that g = h(n1, n2, n3; w; p1, . . . , pm).
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(1) Since the image of the monoid R in G/N is a subgroup, we can find w ∈ K such that

w = (tt̃ · s̃s · tt̃)−1 · g ·
(
(s̃s · tat̃)m−1 · s̃s

)−1 in G/N.

It follows that g = h(0, 0, 0; w; 0, . . . , 0) in G/N .

(2) In particular, we have ĝ − ĥ(0, 0, 0; w; 0, . . . , 0) ∈ d⟨â, b̂⟩ (Lemma 3.2). It follows that
N1 = α(ĝ) − α(ĥ(0, 0, 0; w; 0, . . . , 0)),
Pm = β(ĝ) − β(ĥ(0, 0, 0; w; 0, . . . , 0))

are integer multiples of d. Moreover N1, Pm ⩾ 0 for K computably large enough. We have
g = h(N1, 0, 0; w; 0, . . . , 0, Pm) in G/(N ∩ [G, G]).

The area of h(N1, 0, 0; w; 0, . . . , 0, Pm) is given by

A(taN1 · v · bPms) = 1
2 det(â; b̂) · α(ĝ)β(ĝ) + A(tat−1) · α(ĝ) + A(s−1bs) · β(ĝ) − C(w)

with v = t̃s̃stt̃w(s̃stat̃)m−1s̃, and C(w) is a computable constant that only depends on w.
For K large enough, we may therefore assume A(g) ⩽ A(h(N1, 0, 0; w; 0, . . . , 0, Pm)).

a a a

b

b

b

b

ĝ

t

v

s

Figure 4. The path corresponding to h(N1, 0, 0; w; 0, . . . , 0, Pm).

Indeed, the large triangle (Figure 4) has area 1
2 det(â; b̂) · α(ĝ)β(ĝ). The N1 (resp. Pm)

smaller regions bordered by a (resp. b) have area A(tat−1) (resp. A(s−1bs)).

(3) Next, we apply two transformations in order:

• (n2, pm) → (n2 + d, pm − d). This doesn’t change ĥ, and decreases the area by
A

(
h(N1, n2, 0; w; 0, . . . , 0, pm)

)
− A

(
h(N1, n2 + d, 0; w; 0, . . . , 0, pm − d)

)
= det

(
π

(
s · tt̃ · w · (s̃s · tat̃)m−1 · s̃

)
; d · π(b)

)
= d

(
(m − 1) + α

(
π(w(s̃stt̃)m)

))
det(â; b̂) > 0.

(Note that α(π(s̃s)), α(π(tt̃)), α(ŵ) ⩾ 0 since s̃s, tt̃, w ∈ L.) Repeat as long as possible
while keeping n2 ⩽ 3

5β(ĝ) and A(h) ⩾ A(g). (The first condition ensures that pm ⩾ 0
since pm = Pm − n2 ⩾ 2

5β(ĝ) − β(ĥ(0, 0, 0; w; 0, . . . , 0)) > 0 for K large enough.)
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• (n1, n3) → (n1 − d, n3 + d). This doesn’t change ĥ, and decreases the area by
A

(
h(n1, n2, n3; w; 0, . . . , 0, pm)

)
− A

(
h(n1 − d, n2, n3 + d; w; 0, . . . , 0, pm)

)
= det

(
dπ(a); π(t̃ · s̃bn2s · t)

)
= d

(
n2 + β(π(t̃s̃st))

)
det(â; b̂) ⩾ 0.

Repeat as long as possible while keeping n1 ⩾ 0 and A(h) ⩾ A(g).

At the end of this process, we have found an element h(n1, n2, n3; w; 0, . . . , 0, pm) with
n1, n2, n3, pm ⩾ 0 and n2 ⩽ 3

5β(ĝ), which coincides with g in G/(N ∩ [G, G]). In particular,
A(h) − A(g) ∈ dZ. Moreover, since we cannot apply the second step anymore, we have

0 ⩽ A(h) − A(g) ⩽ d
(
n2 + β(π(t̃s̃st))

)
det(â; b̂) ⩽ d

(3
5β(ĝ) + β(π(t̃s̃st))

)
det(â; b̂).

Here we use that A(g) ⩾ 0. If we had continued until the conditions n2 ⩽ 3
5β(ĝ) and n1 ⩾ 0

were the limiting conditions, we would have reached an area of

A(h) ∼ A

(
h

(
0,

3
5Pm, N1; w; 0, . . . , 0,

2
5Pm

))
∼ − 1

10 det(â; b̂) · α(ĝ)β(ĝ) < 0 ⩽ A(g)

where ∼ means that the quotient converges to 1 when min{α(ĝ), β(ĝ)} → ∞. For K
computably large enough, this implies that the condition A(h) ⩾ A(g) stopped us.

(4) Finally, we use the operation (pi, pi+1) → (pi + 1, pi+1 − 1). We can use this operation
up to (m − 1)(Pm − n2) = 2d(Pm − n2) times, decreasing the area by exactly d each time.
We can therefore reduce the area by any multiple of d up to

2d ·
(2

5β(ĝ) − β(ĥ(0, 0, 0; w; 0, . . . , 0))
)

· d ⩾ d

(3
5β(ĝ) + β(π(t̃s̃st))

)
det(â; b̂)

as d ⩾ det(â; b̂) and β(ĝ) ⩾ K with K large enough. Since A(h) − A(g) was an integer
multiple of d in the correct range after step (3), we get A(h) = A(g) at some point.

As in the Case 3.3.3, we decompose L into two regular languages, with all elements in the
first set treated by Lemma 3.5, and all elements in the second case following the border
of the cone (hence being easier to treat). We first need a lemma to take care of the “area
condition” with a finite state automaton.

Lemma 3.6. Consider a word w ∈ L and w̃ = x1x2 . . . xℓ ∈ X∗ its decomposition. Let
M(w) = #

{
i

∣∣ 1 ⩽ i ⩽ ℓ and α(xi), β(xi) > 0
}

,

N(w) = #
{
(i, j)

∣∣ 1 ⩽ i < j ⩽ ℓ and α(xj), β(xi) > 0
}

.

There exists a computable constant L such that, if

A(w̄) ⩾ 1
2 det(â; b̂) · α(ŵ)β(ŵ) + A(tat−1) · α(ŵ) + A(s−1bs) · β(ŵ) − K,

then M(w), N(w) ⩽ L.

Proof. Let

∆ = max
({

A(x) | x ∈ X
}

∪ {0}
)
,

δ = min
({

α(x), β(x) | x ∈ X
}

\ {0}
)
.
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We can bound the area of w̄ by

A(w̄) =
∑
i<j

1
2 det(x̂i; x̂j) +

∑
i

A(xi)

= 1
2 det(â; b̂)

∑
i<j

α(x̂i)β(x̂j) − α(x̂j)β(x̂i)

 +
∑

i

A(xi)

⩽
1
2 det(â; b̂)

∑
i

α(x̂i) ·
∑

j

β(x̂j) − N(w) · δ2

 +

+
∑

i:β(x̂i)=0
α(x̂i)A(tat−1) +

∑
i:α(x̂i)=0

β(x̂i)A(s−1bs) + M(w) · ∆

⩽
1
2 det(â; b̂) · α(ŵ)β(ŵ) + A(tat−1) · α(ŵ) + A(s−1bs) · β(ŵ) +

+ M(w) · ∆ − 1
2 det(â; b̂) · N(w) · δ2.

The first inequality is the only part using that A(x) ⩽ 0 for all x ∈ X such that π(x) = 0,
and that A(tat−1)/ ∥π(a)∥ and A(s−1bs)/ ∥π(b)∥ are maximal. This ensures that

• A(xi) ⩽ 0 if α(x̂i) = β(x̂i) = 0,

• A(xi) ⩽ α(xi)A(tat−1) if α(x̂i) ̸= 0 and β(x̂i) = 0,

• A(xi) ⩽ β(xi)A(s−1bs) if α(x̂i) = 0 and β(x̂i) ̸= 0.

It follows that M(w) · ∆ − 1
2 det(â; b̂)δ2 · N(w) ⩾ −K. Since

(M(w)
2

)
⩽ N(w) we get

K ⩾
δ2 det(â; b̂)

4 · M(w)
(
M(w) − 1

)
− ∆ · M(w)

hence M(w) ⩽ L for some computable L. Finally N(w) ⩽ 2
δ2 det(â;b̂)(M(w) · ∆ + K).

We decompose the language L̃ given by Proposition 1.1 into two regular subsets:

Lreg :=
{

w̃ ∈ L̃
∣∣∣ α(ŵ), β(ŵ) ⩾ K and N(w) ⩾ L

}
,

and Labn := L̃ \ Lreg.

• We replace Lreg by the bounded regular language

L′
reg =

⋃
w∈K

ta∗t̃ · s̃b∗s · ta∗t̃ · w · (s̃b∗s · tat̃)m−1 · s̃b∗s,

so that {g ∈ ev(Lreg) | A(g) ⩾ 0} ⊆ ev(L′
reg) ⊆ R.

• For the second term, we compute a trim automaton for Labn and compute the set
X associated to each strongly connected component. For each component, π(X) is
contained in the line through π(a) or through π(b). We can apply §3.2 and §3.3.1 to
get a bounded regular language L′

abn such that ev(L′
abn) = ev(Labn).

The language we are looking for is L′
+ = L′

reg ∪ L′
abn.
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3.3.4.ii. There does exist x ∈ X such that π(x) = 0 and A(x) > 0.

This case is similar to §3.3.3. We fix r, c, r̃ ∈ G⋆ labeling a path v → p, a cycle p → p and a
path p → v respectively, such that ĉ = 0 and A(c̄) > 0.

Lemma 3.7. There exists a computable K ⩾ 0 such that, if g ∈ R satisfies
A(g) ⩾ 0, α(ĝ) ⩾ K and β(ĝ) ⩾ K,

then g can be written as g = ev
(
s̃bn1s · tan2 t̃ · rcn3 r̃ · w

)
where n1, n2, n3 varies in Z⩾0 and

w varies in a fixed finite subset of L.

Proof. Let d = A(c) > 0. We introduce the notation
h(n1, n2, n3) = ev

(
s̃bn1s · tan2 t̃ · rcn3 r̃

)
.

We consider the finite-index normal subgroup N = ⟨ād, b̄d, c̄ = zd⟩. Using Lemma 1.2(c), we
construct a finite subset K ⊂ L of representatives for each coset of N intersecting R. For
g ∈ R satisfying the condition from the Lemma 3.7, we take

• w ∈ K such that w̄ = h(0, 0, 0)−1g in G/N .

• n1 = α(π(g)) − α(π(h(0, 0, 0)w̄)) and n2 = β(ĝ) − β(π(h(0, 0, 0)w̄)). These are integer
multiples of d (Lemma 3.2). Moreover, they are non-negative for K large enough.

• n3 = 1
d

(
A(g) − A

(
h(n1, n2, 0) · w̄

))
. Note that n3 is an integer since

g = h(n1, n2, 0)w̄ in G/(N ∩ [G, G]).
Moreover, n3 ⩾ 0 for K large enough. Indeed, we have n1, n2 ⩾ K − C1(w) hence

A
(
h(n1, n2, 0) · w̄

)
= −1

2 det(â; b̂) · n1n2 + C2(w) · n1 + C3(w) · n2 + A(w) ⩽ 0 ⩽ A(g)

for K large enough, where C1(w), C2(w), C3(w) are constant depending on w.

We conclude with π(h(n1, n2, n3)w̄) = π(h(n1, n2, 0)w̄) = π(g) and A(h(n1, n2, n3)w̄) =
A(h(n1, n2, 0)w̄) + n3d = A(g), hence h(n1, n2, n3)w̄ = g.

Finally, we decompose L into two regular languages
L = {w ∈ L | α(ŵ), β(ŵ) ⩾ K} ⊔ {w ∈ L | α(ŵ) < K or β(ŵ) < K} =: Lreg ⊔ Labn.

• The first term can be replaced by a bounded regular language
L′

reg =
{
s̃bn1s · tan2 t̃ · rcn3 r̃ · w

∣∣ n1, n2, n3 ⩾ 0, w ∈ K
}

⊆ L.

Using Lemma 3.7, we have {g ∈ ev(Lreg) | A(g) ⩾ 0} ⊆ ev(L′
reg) ⊆ ev(L).

• For the second term, we compute a trim automaton for Labn and compute the set
X associated to each strongly connected component. For each component, π(X) is
contained in the line through π(a) or through π(b). We can apply §3.2 and §3.3.1 to
get a bounded regular language L′

abn such that ev(L′
abn) = ev(Labn).

The language we are looking for is L′
+ = L′

reg ∪ L′
abn.
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3.4. Equations under rational constraints. Finally, we prove that RatM(H3(Z)) is
decidable, using Proposition 3.3. We prove a stronger result about solving equations under
rational constraints.

Definition 3.8. An equation with rational constraints in G consists of

• an element w ∈ F (x1, . . . , xn) ∗ G and

• n rational subsets R1, . . . , Rn ⊆ G.

This equation admits a solution if there exists (g1, . . . , gn) ∈ R1 × . . . × Rn such that
w(g1, . . . , gn) := f(w) = eG, where f is the homomorphism

f :

F (x1, . . . , xn) ∗ G −→ G
g 7−→ g
xi 7−→ gi

 .

This generalizes the Rational Subset Membership g
?
∈ R, as we may consider the equation

x1 = g under the rational constraint x1 ∈ R.

Theorem 3.9. There exists an algorithm which takes as input an equation with rational
constraints in H3(Z), and decides whether it admits a solution.

This extends the analogous result without rational constraints, due to Duchin, Liang and
Shapiro. The proof is a straightforward adaptation of [9, Theorem 3] and [15, Theorem 6.8],
with Proposition 3.3 as a starting point.

Proof. We first prove the statement under the extra assumption that each rational constraint
is given as Ri = hi,0 {ki,1}∗ hi,1 {ki,2}∗ hi,2 . . . hi,ℓi−1 {ki,ℓi

}∗ hi,ℓi
. (Such a set will be called

“Knapsack-like”.) In particular, a generic element of Ri is given as
gi = gi(n1, . . . , nℓi

) = hi,0 kn1
i,1 hi,1 kn2

i,2 hi,2 . . . hi,ℓi−1 k
nℓi
i,ℓi

hi,ℓi

with nj ∈ N. In coordinates, the existence of a solution reduces to the system{
ŵ(g1, . . . , gn) = 0

A(w(g1, . . . , gn)) = 0

This system consists of two linear and one quadratic equations, with coefficients in 1
2Z and

unknowns ni,j ∈ N, hence we can decide if it admits a solution using [13].

In general, we can write each rational constraint as Ri = ⋃mi
j=1 Rij where each Rij is

Knapsack-like using Proposition 3.3. Therefore, we only have to check whether one of
m1 . . . mn systems with Knapsack-like constraints admits a solution. The final answer is
“Yes” if any of these answers is yes, “No” otherwise.
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Remark 3.10. It should be noted that the result about Rational Subset Membership can be
extended to H3(Q) as every finitely generated subgroup of H3(Q) is (effectively) isomorphic
to a subgroup of H3(Z). Indeed, given a finite set of matrices

Mi =

1 ai ci

0 1 bi

0 0 1

 ∈ H3(Q) (i = 1, 2, . . . , r),

find N ≠ 0 such that Nai, Nbi, N2ci ∈ Z. The dilation δN : (a, b, c) 7→ (Na, Nb, N2c) is an
automorphism H3(Q) → H3(Q) such that δN

(
⟨Mi⟩

)
⩽ H3(Z).

4. Further questions and remarks

One may wonder for which class of groups can the Rational Subset Membership be reduced
to the Knapsack problem (as in Proposition 3.3):

Question D. Characterize groups G such that every rational subset R ⊆ G can be
effectively represented by a bounded regular language L′ ⊂ G⋆. In particular, what if

(1) G is 2-step nilpotent with cyclic derived subgroup?

(2) G is 2-step nilpotent?

(3) G = E is the following “filiform” 3-step nilpotent group
E =

〈
x, y1, y2

∣∣ [x, yi] = yi+1 for i = 1, 2, [x, y3] = [yi, yj ] = 1
〉

?
(4) Does any group of super-polynomial growth have this property?

▶ Using Proposition 1.1 and Lemma 1.2, we can prove that this property passes to quotients,
subgroups and finite-index overgroups.

▶ Recall that 2-step nilpotent groups with infinite cyclic derived subgroup contain copies of
H2m+1(Z) × Zn as finite-index subgroups, see [35, Lemma 7.1]. In particular, we only have
to consider G = H2m+1(Z) × Zn to answer Question D.1.

A positive answer to Question D.1 would be particularly interesting as it would imply
decidability for the Rational Subset Membership for those groups. Indeed, the Knapsack
problem is also decidable for those groups (adapting the proof of [15, Theorem 6.8] from
H3(Z) × Zn to H2m+1(Z) × Zn, then using [15, Theorem 7.3]).

▶ An instance of Question D.2 of special interest is
G = N2,r =

〈
x1, x2, . . . , xr

∣∣ 2-step nilpotent
〉

with R = {x1, x2, . . . , xr}∗. A positive answer (algorithmic in r) would allow to reduce the
Submonoid Membership Problem to the Knapsack Problem in any 2-step nilpotent groups.
In turn, this would provide an example of a group with decidable Submonoid Membership
and undecidable Knapsack problem (adapting the proof of Corollary 2.8). Note that the
answer is positive for r = 2, as we have the equality

{x, y}∗ = {x}∗{y}∗ x {y}∗{x}∗ ⊔ {y}∗

in N2,2 = H3(Z). This equality is one of the key motivations behind §3.3.4.
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▶ The property fails for the free 3-step nilpotent group of rank 2
G = N3,2 =

〈
x, y

∣∣ 3-step nilpotent
〉

.

This group admits a path model similar to the model for elements of H3(Z) defined in
§3.1, where we keep track of an additional parameter B(g) ∈ R2 (see [4, Section 3.1] for
all necessary definitions). We argue that R = {x, y}∗ cannot be represented by a bounded
regular language. Let L′ ⊂ G⋆ be a bounded regular language such that ev(L′) ⊆ R, say

L′ =
I⋃

i=1
vi,0 {wi,1}∗ vi,1 {wi,2}∗ vi,2 . . . vi,ℓi−1{wi,ℓi

}∗ vi,ℓi
.

Observe that ŵi,j ∈ Z2
⩾0, otherwise the word w = vi,0 vi,1 . . . vi,j−1 wN

i,j vi,j . . . vi,ℓi
∈ L′ will

project to ŵ = N · ŵi,j + O(1) /∈ Z2
⩾0 = π(R) for N large enough.

Take a direction u ∈ R2
⩾0 which is not proportional to any of the ŵi,j and take an element

γu,n ∈ ev{x, y}∗ of length n which best follows the ray R+u, as defined in [4, Section 3.2].
Adapting computations from [2, Section 4], we have〈

B(γu,n) − B(w̄); u⊥
〉

= −Ou(n) + Θu(n3) = Θu(n3)

for all elements w ∈ L′ such that ŵ = γ̂u,n. In particular, γu,n /∈ ev(L′) for n large.
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