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Abstract. In this paper we provide an alternative solution to a result by (Juhász 2011),
that the twisted conjugacy problem for odd dihedral Artin groups is solvable, where an
odd dihedral Artin group is a group with presentation G(m) = ⟨a, b | m(a, b) = m(b, a)⟩,
where m ≥ 3 is odd, and m(a, b) is the word abab . . . of length m. Our solution provides an
implementable linear time algorithm, by considering an alternative group presentation to
that of a torus knot group, and working with geodesic normal forms. An application of this
result is that the conjugacy problem is solvable in extensions of odd dihedral Artin groups.

1. Introduction

Over a century ago, Dehn defined his famous decision problems, which have been studied
across a wide range of groups. One of these is the conjugacy problem, which asks if there
exists an algorithm to determine if two elements in a group, given by words on the generators,
are conjugate. This decision problem has been generalised to include an algebraic property
known as twisted conjugacy.

For a finitely generated group G with inverse-closed generating set X, we say two elements
u, v ∈ G are twisted conjugate, by some automorphism ϕ ∈ Aut(G), if there exists an element
w ∈ G such that v = ϕ−1(w)uw. The twisted conjugacy problem (TCP) asks whether
there exists an algorithm to determine if two elements, given as words over X, are twisted
conjugate by some automorphism ϕ ∈ Aut(G). Whilst the twisted conjugacy problem is a
relatively new decision problem, in comparison to the conjugacy problem, several important
results have been established (see [2, 6, 9, 12]). Note that a positive solution to the twisted

Keywords: Twisted conjugacy problem, dihedral Artin groups, orbit decidability, torus knot groups.
2020 Mathematics Subject Classification. 20F10, 20F36.

Journal of GROUPS,
COMPLEXITY, CRYPTOLOGY DOI:10.46298/jgcc.2025.17.1.13561

© Gemma Crowe
CC⃝ Creative Commons

https://gcc.episciences.org/
http://creativecommons.org/about/licenses


3:2 Gemma Crowe Vol. 17:1

conjugacy problem implies a positive solution to the conjugacy problem, however the converse
is not necessarily true [3, Corollary 4.9].

In a series of two papers, we solve the twisted conjugacy problem for dihedral Artin groups.
Artin groups are defined by a simple graph with edge labelling from Z≥2. Despite their long
history of study, there are still open questions, such as the decidability of the word problem,
which are not known for all Artin groups. A typical approach to understand these open
problems is to consider subclasses of Artin groups, which are often defined using conditions
on the defining graph. Dihedral Artin groups are one such class, and are defined by a simple
graph with precisely two vertices and one edge, that is, they have a group presentation
G(m) = ⟨a, b | m(a, b) = m(b, a)⟩, where m ≥ 3 and m(a, b) is the word abab . . . of length m.

These one-relator, torsion free groups are appealing to study from a computational perspec-
tive, and recent studies have found interesting results such as decidability of equations [8],
and solvable conjugacy problem in linear time [13]. We note here that the twisted conjugacy
problem for dihedral Artin groups was already known to be solvable by Juhász [14], with
respect to length-preserving automorphisms. To solve the twisted conjugacy problem for
dihedral Artin groups with respect to all automorphisms, we consider when the edge labelling
of our defining graph is either odd or even. In this first paper, we focus on odd dihedral
Artin groups and further improve on Juhász’s result, by constructing an algorithm to check
if two words, representing group elements, are twisted conjugate. Moreover, this algorithm
has linear time complexity, based on the length of the input words.

Theorem 4.4. The twisted conjugacy problem TCP(G(m)) for dihedral Artin groups, where
m is odd, m ≥ 3, is solvable in linear time.

The key step is to utilise the fact that any odd dihedral Artin group G(m) is isomorphic
to a torus knot group. In particular, G(m) is isomorphic to the group with presentation
⟨x, y | x2 = ym⟩, where m is odd. With this presentation, we find that the automorphism
group of G(m) is finite of order two. Moreover, we can use a geodesic normal form derived
by Fujii [10], to construct a linear time algorithm to solve the TCP(G(m)).

As an application of Theorem 4.4, we consider the conjugacy problem in extensions of odd
dihedral Artin groups, using a criteria from [3] (see Theorem 5.2). This criteria requires
understanding orbit decidability for subgroups A ≤ Aut(G), for some group G. The orbit
decidability problem asks whether we can determine if for two elements u, v ∈ G, there exists
an automorphism ϕ ∈ A such that v is conjugate to ϕ(u). To apply the criteria from [3],
we require what is known as the ‘action subgroup’ of odd dihedral Artin groups to be orbit
decidable. For odd dihedral Artin groups, we prove a stronger statement, by showing that
all subgroups of the automorphism group of odd dihedral Artin groups are orbit decidable.

Theorem 5.1. Every finitely generated subgroup A ≤ Aut(G(m)), when m is odd, is orbit
decidable.

Combined with Theorem 4.4, we can find new examples of groups with solvable conjugacy
problem.
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Theorem 5.4. Let G = G(m) ⋊H be an extension of an odd dihedral Artin group by a
finitely generated group H which satisfies conditions (ii) and (iii) from Theorem 5.2 (e.g.
let H be torsion-free hyperbolic). Then G has decidable conjugacy problem.

We note that the conjugacy problem is solvable for virtual dihedral Artin groups [8, Corollary
3.2], which proves Theorem 5.4 in the case where H is finite.

The structure of this paper is as follows. After providing necessary details on decision
problems, twisted conjugacy and odd dihedral Artin groups in Section 2, we construct a
linear time solution with respect to outer automorphisms in Section 3. This is then extended
in Section 4 to solve the TCP for odd dihedral Artin groups. Finally in Section 5, we study
orbit decidability, which allows us to use the criteria from [3] to find new examples of group
extensions of odd dihedral Artin groups with solvable conjugacy problem.

2. Preliminaries

All groups in this paper are finitely generated, and all finite generating sets are inverse-closed.
For a subset S of a group, we let S± = S ∪ S−1, where S−1 = {s−1 | s ∈ S}. In certain
cases, group presentations will be stated using generating sets which are not inverse-closed,
and when we pass to the relevant inverse-closed generating set, we won’t explicitly mention
the corresponding change in the group presentation.

2.1. Decision problems and twisted conjugacy. Let X be a finite set, and let X∗ be
the set of all finite words over X. For a group G generated by X, we use u = v to denote
equality of words in X∗, and u =G v to denote equality of the group elements represented
by u and v. We let l(w) denote the word length of w over X. For a group element g ∈ G,
we define the length of g, denoted |g|X , to be the length of a shortest representative word
for the element g over X. A word w ∈ X∗ is geodesic if l(w) = |π(w)|X , where π : X∗ → G
is the natural projection. If there exists a unique word w of minimal length representing g,
then we say w is a unique geodesic. Otherwise, w is a non-unique geodesic. We let ε denote
the empty word over X representing the identity element of G.

Definition 2.1. Let G = ⟨X⟩. The word problem for G, denoted WP(G), takes as input a
word w ∈ X∗, and decides whether it represents the trivial element of G. The conjugacy
problem for G, denotes CP(G), takes as input two words u, v ∈ X∗, and decides whether
they represent conjugate elements in G. We write u ∼ v when u and v represent conjugate
elements in G.

Definition 2.2. Let G = ⟨X⟩, let u, v ∈ X∗, and let ϕ ∈ Aut(G) be an automorphism of G.

(1) We say u and v are ϕ-twisted conjugate, denoted u ∼ϕ v, if there exists an element
w ∈ G such that v =G ϕ(w)

−1uw.
(2) The ϕ-twisted conjugacy problem for G, denoted TCPϕ(G), takes as input two words

u, v ∈ X∗, and decides whether they represent groups elements which are ϕ-twisted
conjugate to each other in G.
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(3) The (uniform) twisted conjugacy problem for G, denoted TCP(G), takes as input two
words u, v ∈ X∗ and ϕ ∈ Aut(G), and decides whether u and v represent groups elements
which are ϕ-twisted conjugate in G.

A solution to the TCP(G) implies a solution to TCPϕ(G) for all ϕ ∈ Aut(G), and therefore
a solution to the CP(G) and the WP(G). We first observe that to solve the TCP(G), we
can study the outer automorphism group, rather than the automorphism group as a whole.
This was originally noted in [12].

Remark 2.3. Let ψ ∈ Aut(G), and let [ψ] denote the equivalence class of ψ in Out(G). We
can write ψ in the form ψ = ιgϕ, where ιg ∈ Inn(G) denotes conjugation by g, and ϕ ∈ [ψ].
If [ψ] is trivial, then the TCPψ(G) is equivalent to solving the CP(G) by the following
relations:

v =G ψ(w)
−1uw ⇔ v =G g

−1w−1guw ⇔ gv =G w
−1(gu)w,

for some fixed g ∈ G. Otherwise, we have

v =G (ιgϕ)(w)
−1uw ⇔ v =G g

−1ϕ(w)−1guw ⇔ gv =G ϕ(w)
−1(gu)w,

for some fixed g ∈ G. In particular, if [ψ] is non-trivial, then the TCPψ(G) is equivalent to
solving the TCPϕ(G) for some fixed ϕ ∈ [ψ].

Definition 2.4. Let G = ⟨X⟩ be a group. We say ϕ ∈ Aut(G) is:

(i) length-preserving if |π(w)| = |ϕ(π(w))| for any word w ∈ X∗, and
(ii) non-length preserving otherwise.

2.2. Odd dihedral Artin groups.

Definition 2.5. Let m ∈ Z>1. The dihedral Artin group is the group defined by the
following presentation:

G(m) = ⟨a, b | m(a, b) = m(b, a)⟩, (2.1)

where m(a, b) is the word abab . . . of length m.

We first note the following result, which solves the TCPϕ(G(m)) in the case where the
automorphism ϕ ∈ Aut(G(m)) is trivial.

Theorem 2.6. [13, Proposition 3.1] The conjugacy problem is solvable in dihedral Artin
groups in linear time.

If m = 2, then G(m) is the free abelian group, and if m = 3, then G(m) is the braid group
B3. We note that the twisted conjugacy problem has been solved in both of these cases
[3, 12]. For the remainder of this paper, we will assume m ≥ 3 is odd. To solve the TCP for
G(m), we will work with a different generating set, which we now define.

Definition 2.7. Let m = 2k + 1, where k ∈ Z≥1. We define

P = ⟨x, y | x2 = ym⟩ (2.2)

to be the presentation of a torus-knot group. For notation we let X = {x, y}±, which we
refer to as the free product generating set.
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Lemma 2.8. When m ≥ 3 is odd, the presentations given in Eq. (2.1) and Eq. (2.2) represent
isomorphic groups.

Proof. We apply a sequence of Tietze transformations to G(m) to obtain P as follows. First,
set x = m(a, b) and y = ab, which gives us

G(m) ∼= ⟨a, b, x, y | m(a, b) = m(b, a), x = m(a, b), y = ab⟩.
Since x = byk = yka, then x2 = ykabyk = y2k+1, and so our relations can be rewritten as

G(m) ∼= ⟨a, b, x, y | x = m(a, b) = m(b, a), y = ab, x2 = y2k+1⟩.
Next we remove the generator a, by rewriting our relation y = ab as a = yb−1. Removing
redundant relations gives us

G(m) ∼= ⟨b, x, y | x = yk+1b−1 = byk, x2 = y2k+1⟩.
Finally we remove the generator b in a similar way by rewriting the relation x = byk, and
removing redundant relations. This leaves us with G(m) ∼= P as required.

Before considering twisted conjugacy, we first need to understand the outer automorphisms
of this group.

Theorem 2.9. [11, Theorem C] Let G(m) be defined as in Eq. (2.2). Then Out(G(m)) ∼= C2.

In particular, Aut(G(m)) = Inn(G(m)) ⊔ Inn(G(m)) · ϕ where ϕ inverts all generators, i.e.

ϕ : x 7→ x−1, y 7→ y−1. (2.3)

For the remainder of this section, we assume ϕ ∈ Aut(G(m)) as in Eq. (2.3). We let
rev(w) denote the word w ∈ X∗ written in reverse, and note that for any word w ∈ X∗,
ϕ(w)−1 = rev(w). Indeed if w = wa1i1 . . . w

an
in
∈ X∗, where each wij ∈ X and aj ∈ Z̸=0

(1 ≤ j ≤ n), then ϕ(w) = w−a1
i1

. . . w−an
in

, and so ϕ(w)−1 = wanin . . . w
a1
i1

= rev(w). Therefore
checking if two elements are twisted conjugate reduces to checking if v =G rev(w)uw.

We now provide a set of geodesic normal forms for G(m). These were originally derived
from [10], and further details can be found in [7] and Appendix A.

Proposition 2.10. Any element g ∈ G(m) can be represented by a geodesic word u =
xa1yb1 . . . ybτ∆c, where ∆ =G x

2 =G y
2k+1, with conditions given in Table 2.

We refer to ∆ as the Garside element, and note that any power of ∆ is central.

Definition 2.11. Let u = xa1yb1 . . . ybτ∆c ∈ X∗ be geodesic. We say u is Garside-free if
c = 0.

Let u ∈ X∗ be a geodesic, where l(u) > 1. We can write u in the form u = u1u2 for
some non-empty geodesic words u1, u2 ∈ X∗. We say u1 is a proper prefix of u, and u2 is
a proper suffix of u. We let P(u) and S(u) be the set of all possible proper prefixes and
suffixes of u respectively. With these definitions, we can define an equivalent notion of cyclic
permutations, with respect to twisted conjugacy.
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Definition 2.12. Let u ∈ X∗ be a geodesic, where l(u) > 1. Let u = u1u2 for some
u1 ∈ P(u), u2 ∈ S(u). Let ϕ ∈ Aut(G(m)) as defined in Eq. (2.3). We define a ϕ-cyclic
permutation of a prefix of u to be the following operation on u:

u = u1u2 7→ u2ϕ(u1).

Similarly we define a ϕ-cyclic permutation of a suffix of u as

u = u1u2 7→ ϕ(u2)u1.

For brevity, we will use
ϕ←→ to denote a ϕ-cyclic permutation of either a prefix or suffix. We

note that any ϕ-cyclic permutation can be reversed as follows:

u1u2 7→ u2ϕ(u1) 7→ ϕ(ϕ(u1))u2 = u1u2.

If two geodesics u, v ∈ X∗ are related by a ϕ-cyclic permutation, then u ∼ϕ v.

3. Algorithm for Outer Automorphisms

Our main goal is to solve the twisted conjugacy problem TCPϕ(G(m)), where ϕ ∈ Aut(G(m))
as in Eq. (2.3). We will then generalise this algorithm, using Remark 2.3, to solve the twisted
conjugacy problem TCP(G(m)).

We will first show that when ϕ ∈ Aut(G(m)) as in Eq. (2.3), then every geodesic is twisted
conjugate to a minimal length twisted conjugacy representative which is Garside free.
Moreover, for two minimal representatives which are twisted conjugate, we will show that
they are related by a finite sequence of ϕ-cyclic permutations and equivalent geodesics. Since
ϕ is length-preserving, this will lead to our basic algorithm, which we later improve to give
a linear time algorithm.

3.1. Garside free representatives.

Definition 3.1. Let u ∈ X∗ be geodesic. We say u is of Type (3) if u is not of Type (1)
or (2) (see Table 2). In particular, Type (3) geodesics are Garside free (recall Definition

2.11). We let (3) ⊂ (3) denote the set of all words u ∈ (3), such that u starts and ends with
opposite letters.

Our first step is to prove the following result, which shows that any geodesic u ∈ X∗ can be
transformed to a geodesic u′ ∈ X∗, which is Garside free, such that u ∼ϕ u′.

Proposition 3.2. Let u ∈ X∗ be a geodesic. Then there exists a geodesic u′ ∈ (3), such
that u ∼ϕ u′ and l(u′) ≤ l(u).

We first consider some simple cases.
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Lemma 3.3. Let u = xt and v = yt+mc, for some t ∈ Z≥0, c ∈ Z. Then

u = xt ∼ϕ

{
ε, t is even,

x±1, t is odd,
and v = yt+mc ∼ϕ

{
ε, c, t have same parity,

y±1, c, t have opposite parity.

Proof. First consider u = xt. If t = 2d, for some d ∈ Z, we can apply the following ϕ-cyclic
permutation to u:

u =G x
dxd

ϕ←→ x−dxd =G ε.

Similarly if t = 2d+ 1, we have

u =G x
dxd+1 ϕ←→ x−dxd+1 =G x

ϕ←→ x−1.

Now suppose v = yt+mc =G. y
t∆c. If c = 2d, for some d ∈ Z, then v =G yt∆2d ϕ←→

∆−dyt∆d =G y
t. If t is even, then yt

ϕ←→ y−t/2yt/2 =G ε. Similarly if t is odd, then yt
ϕ←→ y±1.

Otherwise, if c = 2d + 1, then v = yt∆2d+1 ϕ←→ ∆−dyt∆∆d =G yt∆ = yt+m. If t is odd,

then t + m is even, and so yt+m
ϕ←→ ε. Similarly if t is even, then t + m is odd and so

yt+m
ϕ←→ y±1.

To prove Proposition 3.2, we will construct a set of rewriting rules which can be repeatedly
applied to a geodesic u ∈ X∗ to obtain an element u′ ∈ (3). These rules are invariant under

∼ϕ, that is, after applying a sequence of these rules to u, we obtain a word u′ ∈ (3) such
that u ∼ϕ u′. Let v ∈ X∗ such that v is Garside free, let x, y ∈ X and ϵ, ϵ1, ϵ2 ∈ {±1}. We
define our set of rewrite rules as follows.

(R1): v∆c →

{
v, c = 2d, d ∈ Z̸=0,

v∆, c = 2d+ 1, d ∈ Z̸=0.

(R2): For c ∈ {0, 1}, xϵ1vxϵ2∆c →

{
v∆c, ϵ1 = ϵ2,

v∆c+ϵ, ϵ1 ̸= ϵ2.

(R3): For c ∈ {0, 1}, yb1vybn∆c →


yb1−bnv∆c b1 − bn ∈ [−(m− 1),m− 1] ∩ Z̸=0,

v∆c, b1 = bn,

v∆c+ϵ, |b1 − bn| = m.

(R4): xϵ1vyb∆ϵ2 → x−ϵ1vyb.
(R5): ybvxϵ1∆ϵ2 → ybvx−ϵ1 .

All rules either preserve or decrease word length.

Proposition 3.4. The rules (R1)-(R5) are invariant under ∼ϕ.

Proof. Each rule can be obtained by applying ϕ-cyclic permutations and relations from
G(m) as follows.

(R1): If c = 2d, then v∆2d ϕ←→ ∆−dv∆d =G v. If c = 2d+1, then v∆2d+1 ϕ←→ ∆−dv∆d∆ =G v∆.
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(R2): xϵ1vxϵ2∆c =G xϵ1v∆cxϵ2
ϕ←→ xϵ1−ϵ2v∆c. This is equivalent to v∆c when ϵ1 = ϵ2, and

x±2v∆c =G v∆
c±1 when ϵ1 ̸= ϵ2.

(R3): yb1vybn∆c =G y
b1v∆cybn

ϕ←→ yb1−bnv∆c. The result then follows since ym = ∆.

(R4): If ϵ1 = ϵ2, then xϵ1vyb∆ϵ2 = xϵ1vybx2ϵ1
ϕ←→ xϵ1−2ϵ1vyb =G x−ϵ1vyb. Otherwise, if

ϵ1 = −ϵ2, then xϵ1vyb∆ϵ2 = xϵ1vybx−2ϵ1 =G x
−ϵ1vyb. (R5) follows a similar proof.

Proof of Proposition 3.2. Assume u ̸∈ (3). If u contains only x or y factors, then we obtain
u′ ∈ {ε, x±1, y±1}, such that u ∼ϕ u′, based on the conditions given in Lemma 3.3.

We can therefore assume u contains both x and y factors, and so u = u1∆
c, where u1 ∈ (3)

is Garside free, and c ∈ Z. We apply the following sequence of rewrite rules, to obtain an
element u′ ∈ (3):

(1) If c ̸= 0, apply (R1) to obtain an element of the form u1 or u1∆.
(2) If u1 starts and ends with the same letter, then repeatedly apply (R2)-(R3), to obtain an

element of the form u1 or u1∆
±1, where u1 ∈ (3). If, after any application of (R2)-(R3),

we obtain an element of the form u1∆
±2, then return to Step 1 and apply (R1).

(3) If, after Step 2, we obtain u1∆
±1 where u1 ∈ (3), then apply (R4) or (R5) to obtain an

element u1 ∈ (3).

By Proposition 3.4, u is twisted conjugate to the output u′ of this sequence of rewrite rules.
Since (R1)-(R5) either preserves or decreases word length, then l(u′) ≤ l(u).

3.2. Twisted cyclic geodesics. We now consider which elements of Type (3), as defined
in Definition 3.1, are minimal length up to twisted cyclic permutations.

Definition 3.5. Let G = G(m) be a group with presentation as in Eq. (2.2). We define the
set of twisted cyclic geodesics, denoted CycGeoϕ(G,X), to be the set of all geodesics u ∈ X∗,
such that every ϕ-cyclic permutation of u is also geodesic.

Let CycGeo
ϕ,(3)

(G,X) = CycGeoϕ(G,X)∩ Type (3) be the set of all twisted cyclic geodesics

of Type (3). The following example highlights that when we apply a ϕ-cyclic permutation

to u ∈ (3), we can obtain a word which is no longer geodesic.

Example 3.6. Suppose m = 5, and consider u = y−3x−1 ∈ X∗, which is geodesic of length
4. We can take a twisted cyclic permutation of u by applying the ϕ-cyclic permutation

u = y−3x−1 ϕ←→ ϕ
(
x−1

)
y−3 = xy−3 = u′. Here u′ is not geodesic, since u′ =G x

−1y2, which
is of length 3.

To consider when words of Type (3) lie in CycGeo
ϕ,(3)

(G,X), we first consider when words

of Type (3) are geodesic.
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Definition 3.7. For u = xa1yb1 . . . xaτ ybτ ∈ (3), define

Posx(u) := max{ai : ai ≥ 0, 1 ≤ i ≤ τ}, Negx(u) := max{−ai : ai ≤ 0, 1 ≤ i ≤ τ},
Posy(u) := max{bi : bi ≥ 0, 1 ≤ i ≤ τ}, Negy(u) := max{−bi : bi ≤ 0, 1 ≤ i ≤ τ}.

Proposition 3.8. [10, Proposition 3.5] Let u ∈ (3) be geodesic. Then the following conditions
must all be satisfied:

(1) Posx(u) + Negx(u) ≤ 2.
(2) Posy(u) + Negy(u) ≤ 2k + 1.

(3) Posx(u) + Negy(u) ≤ k + 1.
(4) Posy(u) + Negx(u) ≤ k + 1.

Suppose u ∈ (3) is geodesic and u
ϕ←→ u′ for some u′ ∈ X∗. We want to establish when u′ is

geodesic, and hence u ∈ CycGeo
ϕ,(3)

(G,X). Let u = xa1yb1 . . . xaτ ybτ ∈ (3) and consider a

ϕ-cyclic permutation of the form

u′ = x−aiy−bi . . . x−aτ y−bτxa1yb1 . . . xai−1ybi−1 ,

for some 1 ≤ i ≤ τ . We consider each of the 4 conditions from Proposition 3.8, when applied
to u′.

The first condition is immediate, since Posx(w) ≤ 1 and Negx(w) ≤ 1 for all words w ∈ X∗.
Since u′ contains at least one x±1 term, then by Conditions 3 and 4, there cannot be any
y±(k+1) terms in u′. Condition 2 always holds with this restriction. This immediately implies
that for u′ to be geodesic, then u cannot be of Type (30+N) or (30−N) (recall Table 2),

since both of these require the existence of y±(k+1) terms. This allows us to fully classify
twisted cyclic geodesics of Type (3).

Corollary 3.9. Let (3++) = (3+) ∪
(
30+U

)
, and let (3−−) = (3−) ∪

(
30−U

)
. Then

CycGeo
ϕ,(3)

(G,X) = {u ∈
(
3++

)
∪
(
3−−) ∪ (

30∗
)
| u starts and ends with opposite letters}.

In particular, if u = xa1yb1 . . . xaτ ybτ ∈ CycGeo
ϕ,(3)

(G,X), then u satisfies the following

conditions:

(i) a1 = 0 if and only if bτ = 0,
(ii) −k ≤ bi ≤ k (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1), and

(iii)


0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ), u ∈ (3++),

−1 ≤ ai ≤ 0 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ), u ∈ (3−−),

−1 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ), u ∈ (30∗).

For notation, we let CycGeo
ϕ,(3)

= CycGeo
ϕ,(3)

(G,X).

Lemma 3.10. Let u ∈ (3). Then there exists u′ ∈ CycGeo
ϕ,(3)

such that u ∼ϕ u′ and

l(u) ≥ l(u′).

Proof. By the previous discussion, we only need to consider words u ∈ (3) which contain any

y±(k+1) terms. For ϵ ∈ {±1}, we can first rewrite all pairs
(
yε(k+1), y−ϵ(k+1)

)
as

(
y−ϵk, yϵk

)
,

until we are left only with yk+1 terms or y−(k+1) terms (see Proposition A.1). Then, we can



3:10 Gemma Crowe Vol. 17:1

take a ϕ-cyclic permutation, which switches all yϵ(k+1) terms to y−ϵ(k+1), and then apply
the following rewrite rule to obtain a word u′ ∈ CycGeo

ϕ,(3)
:

sxϵty−ϵ(k+1)z =G sx
2ϵx−ϵty−ϵ(2k+1)yϵkz =G sx

−ϵtyϵkz, (3.1)

where s, t, z ∈ X∗.

We also have to consider when non-unique geodesics can occur in CycGeo
ϕ,(3)

.

Proposition 3.11. [10, Proposition 3.8]
Let u ∈ (3) be geodesic. Then u is a non-unique geodesic representative if at least one of the
following conditions is satisfied:

(1) There exists both x and x−1 terms in u, or
(2) Posy(u) + Negy(u) = m.

Corollary 3.12. Let u ∈ CycGeo
ϕ,(3)

be a non-unique geodesic. Then the only rewrite rule

we can apply to u is that of the form

sxϵtx−ϵz =G sx
2ϵx−ϵtx−2ϵxϵz =G sx

−ϵtxϵz, (3.2)

where ϵ ∈ {±1}, s, t, z ∈ X∗.

Proof. For any yb factor in u, we have that |b| ≤ k by Corollary 3.9, and so Condition 2 of
Proposition 3.11 is never satisfied. For the first condition, the only rewrite rule we can apply
is Eq. (3.2), for all pairs of

(
x, x−1

)
terms.

Remark 3.13. We note that if u ∈ CycGeo
ϕ,(3)

, then u is a non-unique geodesic precisely

when u ∈
(
30∗

)
. Eq. (3.2) allows us to check quickly if two geodesics u, v ∈ CycGeo

ϕ,(3)
rep-

resent the same element. In particular, if u = xa1yb1 . . . xaτuybτu , v = xα1yβ1 . . . xατv yβτv ∈
CycGeo

ϕ,(3)
, then u =G v if and only if τu = τv, bi = βi for all 1 ≤ i ≤ τu, and the sets

Xu = {a1, . . . , aτu} and Xv = {α1, . . . , ατu} are equal.

The following result highlights that if u ∈ CycGeo
ϕ,(3)

is a non-unique geodesic, then any

equivalent word u′ =G u is also of minimal length up to twisted cyclic permutations.

Lemma 3.14. Let u ∈ CycGeo
ϕ,(3)

, and suppose u =G u
′ for some geodesic u′ ∈ X∗. Then

u′ ∈ CycGeo
ϕ,(3)

.

Proof. If u is uniquely geodesic we are done, so suppose u is a non-unique geodesic. From
Corollary 3.12, we only need to consider rewriting of the form in Eq. (3.2). Assume u is of
the form u = sxtx−1z, for some s, t, z ∈ X∗, and u′ = sx−1txz =G u. We now check if all
ϕ-cyclic permutations of u′ are geodesic. All ϕ-cyclic permutations of u′ are equivalent to a
ϕ-cyclic permutation of u, which are geodesic by assumption, except for the following cases.

(i) u′ = sx−1txz
ϕ←→ x−1ϕ(z)sx−1t = v1. The only possibility for v1 to not be geodesic is

if there exists a yβ factor in either ϕ(z), s or t, where β = ±(k + 1). This however is

impossible since u ∈ CycGeo
ϕ,(3)

, so no yβ terms in s, t, and z can equal y±(k+1).
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(ii) u′ = sx−1txz
ϕ←→ txzϕ(s)x = v2. A similar argument to (i) shows v2 must also be

geodesic.

A symmetric argument holds in the case where u = sx−1txz.

With this set CycGeo
ϕ,(3)

of minimal length twisted conjugacy representatives, we can show

that a finite sequence of ϕ-cyclic permutations and equivalent geodesics exists between any
two twisted conjugate elements which lie in CycGeo

ϕ,(3)
.

Theorem 3.15. Let u, v ∈ CycGeo
ϕ,(3)

. Then u ∼ϕ v if and only if l(u) = l(v) and there

exists a finite sequence u = u0, u1, . . . , us = v, such that ui ↔ ui+1 via a ϕ-cyclic permutation
or an equivalent geodesic, for all 0 ≤ i ≤ s− 1.

Proof. The reverse implication is clear by Definition 2.12 and Lemma 3.14. For the forward
direction, assume v =G ϕ(w)

−1uw = rev(w)uw for some w ∈ X∗. We assume w is written
in geodesic form, as defined in Table 2. We consider different cases for w ∈ X∗.

Case 1: w = ∆c.
Suppose v =G rev(∆c)u∆c =G u∆2c. Without loss of generality, assume c > 0. Since
v ∈ CycGeo

ϕ,(3)
, v is Garside free, so there exists free cancellation between u and ∆2c. First,

note that no cancellation of ∆2c can occur with any y factors in u. If this were the case,
we’d have

v =G u∆
2c = sybit∆2c =G sy

bi+my−mt∆2c =G sy
bi+mt∆2c−1,

for some bi where −k ≤ bi < 0, and some s, t ∈ X∗. Since bi +m ≥ k + 1, and no yβ term,
where |β| > k, can occur in v by Corollary 3.9, then either this type of cancellation cannot
occur, or we need to reverse this rewrite. Since c > 0, the only way we can do this is through
the existence of an x−1 term in u. If this is the case, we can apply the following rewrite:

v =G u∆
2c = sx−1tybiz∆2c =G sx

−1tybi+mz∆2c−1 =G sx
−2xtybiymz∆2c−1 =G sxty

biz∆2c−1,
(3.3)

where s, t, z ∈ X∗. From Eq. (3.3), we note that we can skip the middle step, and lower
the power of the Garside element using the x−1 term directly, whilst leaving all y terms
unchanged. Therefore, we can assume that no y factors cancel with ∆2c, and that there
exists 2c x−1 terms in u, which cancel with ∆2c, to give a Garside free element as required.

Let ux = {a1, . . . , aτ} denote the multiset of exponents of x factors in u. Similarly let vx
be the multiset of exponents of x factors in v. By the previous observation, there exists
a (possibly non-unique) set I = {ai1 , . . . , ai2c} ⊆ ux, such that vx = ϕ(I) ⊔ ux \ I, where
ϕ(I) = {−ai1 , . . . ,−ai2c}. In other words, we take a subset I ⊆ ux, such that all exponents
ai ∈ I correspond to x−1 terms which cancel with ∆2c, by repeatedly applying x−1∆ = x.
In particular, all values ap ∈ I equal -1, and all values aq ∈ ϕ(I) equal 1 (for i1 ≤ p, q ≤ i2c).
We can write I = I1 ⊔ I2 as two disjoint sets of equal size:

I1 = {ai1 , . . . , aic}, I2 = {aic+1 , . . . , ai2c}.
Let u =G u1u2 such that u1, u2 ∈ X∗ are geodesics, such that all x factors with exponents
in I1 lie in u1, and similarly x factors with exponents in I2 lie in u2. By applying x−1∆ = x
to all x factors in u with exponents in I, we can write v in the form v =G u1u2∆

2c =G v1v2,
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for some geodesic words v1, v2 ∈ X∗ such that v1v2 ∈ X∗ is also geodesic. Note u1u2, v1v2 ∈
CycGeo

ϕ,(3)
by Lemma 3.14. We now have

u =G u1︸︷︷︸
I1

u2︸︷︷︸
I2

, v =G v1︸︷︷︸
ϕ(I1)

v2︸︷︷︸
ϕ(I2)

.

Here v1 contains all x factors with exponents from ϕ(I1), that is all x factors in u1 with
exponents in I1, which have now been rewritten. Similarly v2 contains all x factors with
exponents from ϕ(I2), that is all x factors in u2 with exponents in I2, which have now been
rewritten. In other words, u1 is equal to v1 as a word, up to applying ϕ to all x factors with
exponents in I1, and similarly u2 is equal to v2 as a word, up to applying ϕ to all x factors
with exponents in I2. We will denote this property by u1 ∼=1 v1 and u2 ∼=2 v2.

We want to show that there exists a sequence from v to u of ϕ-cyclic permutations and
equivalent geodesics. First, we can apply the following ϕ-cyclic permutation to v1v2:

v =G v1︸︷︷︸
ϕ(I1)

v2︸︷︷︸
ϕ(I2)

ϕ←→ ϕ(v2)︸ ︷︷ ︸
I2

v1︸︷︷︸
ϕ(I1)

= v′.

Here v′ has c x−1 terms in ϕ(v2) corresponding to I2, and c x terms in v1 corresponding
to ϕ(I1). These powers can be switched with each other, by repeatedly applying Eq. (3.2).
Equivalently, we can apply ϕ to all x factors with exponents corresponding to I2 and ϕ(I1).

This gives us a word of the form ϕ(v2)v1, where ϕ(v2) ∼=2 ϕ(v2) and v1 ∼=1 v1. This leaves us
with

v =G v1︸︷︷︸
ϕ(I1)

v2︸︷︷︸
ϕ(I2)

ϕ←→ ϕ(v2)︸ ︷︷ ︸
I2

v1︸︷︷︸
ϕ(I1)

=G ϕ(v2)︸ ︷︷ ︸
ϕ(I2)

v1︸︷︷︸
I1

.

Again note ϕ(v2)v1 ∈ CycGeo
ϕ,(3)

by Lemma 3.14. Finally, we can apply another ϕ-cyclic

permutation to obtain a word equivalent to u:

v =G v1︸︷︷︸
ϕ(I1)

v2︸︷︷︸
ϕ(I2)

ϕ←→ ϕ(v2)︸ ︷︷ ︸
I2

v1︸︷︷︸
ϕ(I1)

=G ϕ(v2)︸ ︷︷ ︸
ϕ(I2)

v1︸︷︷︸
I1

ϕ←→ v1︸︷︷︸
I1

v2︸︷︷︸
I2

= u1u2 =G u

The last equality holds by the following observation. Since u1 ∼=1 v1 ∼=1 v1, then u1 = v1,
since ϕ is of order 2. Similarly since ϕ(v2) ∼=2 ϕ(v2), then v2 ∼=2 v2. Hence u2 ∼=2 v2 ∼=2 v2,
and so u2 = v2, which completes this case.

Case 2: w is Garside free.
Suppose v =G rev(w)uw, where w is Garside free. Since v starts and ends with opposite
factors, there exists free cancellation in rev(w)uw. Moreover, this cancellation occurs
either in rev(w)u or uw, but not both, since u starts and ends with opposite factors.
Assume free cancellation occurs in uw. We let u =G u1u2, w =G u−1

2 z. Then we can

write v =G rev(z)rev
(
u−1
2

)
u1z. Since u1u2 ∈ CycGeo

ϕ,(3)
by Lemma 3.14, the subword

rev
(
u−1
2

)
u1 = ϕ(u2)u1 must be geodesic. Assuming u2 is maximal, we can assume z is

empty, since v starts and ends with opposite factors. Therefore v =G rev
(
u−1
2

)
u1 and we

obtain our required sequence of ϕ-cyclic permutations and equivalent geodesics as follows:

v =G rev
(
u−1
2

)
u1

ϕ←→ u1ϕ
(
rev

(
u−1
2

))
= u1u2 =G u.

A similar proof holds when cancellation occurs in rev(w)u.
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Case 3: All remaining cases.
Assume w = w1∆

c is a geodesic of Type 1 or 2, and so v =G rev(w1)uw1∆
2c. Without loss

of generality, assume w is of Type 1, that is c > 0 and all x factors in w1 have positive
powers. In this situation, there can exist either free cancellation within rev(w1)uw1, or we can
rewrite factors of rev(w1)uw1 with the Garside element. We first consider free cancellation
in rev(w1)uw1. Similar to Case 2, we assume u =G u1u2, w1 =G u

−1
2 z, and hence

v =G rev(z)rev
(
u−1
2

)
u1z∆

2c.

If z is the empty word, then v =G rev
(
u−1
2

)
u1∆

2c. Here we can apply Case 1 to obtain a

sequence of ϕ-cyclic permutations and equivalent geodesics between v and rev(u−1
2 )u1. Then

since rev(u−1
2 )u1

ϕ←→ u1u2 =G u, we have that u and v are related by a sequence of ϕ-cyclic
permutations and equivalent geodesics.

Otherwise, suppose z is not empty. We use similar techniques to Case 1, by considering
rewriting x-factors from rev(z)rev

(
u−1
2

)
u1z with the Garside element, as follows. The only

rewrite rule we can apply is Eq. (3.2), however we note that all x−1 terms which cancel with
∆2c must come from the subword rev

(
u−1
2

)
u1. This is because w is of Type 1, and so all x

factors in z have a positive exponent. After cancellation with the Garside element, we can
rewrite v as

v =G rev(z)rev
(
u−1
2

)
u1z,

after 2c x−1 terms from rev
(
u−1
2

)
u1 have cancelled with the Garside element. Since v starts

and ends with opposite letters, we can assume v =G rev
(
u−1
2

)
u1, and from here we can

apply the same proof as Case 1. A similar proof holds when free cancellation occurs in
rev(w1)u, or when we rewrite factors of rev(w1)uw1.

Proposition 3.16. The twisted conjugacy problem TCPϕ(G(m)), where m is odd, m ≥ 3,
with respect to ϕ : x 7→ x−1, y 7→ y−1, is solvable.

Proof. A summary of our algorithm is as follows.

Input:

(i) m ∈ Z≥3 which is odd.
(ii) Words u, v ∈ X∗ representing group elements.
(iii) ϕ : x 7→ x−1, y 7→ y−1 ∈ Aut(G(m)).

Step 1: Geodesic form

Write u, v in geodesic forms u, v respectively, given by Table 2.

Step 2: Simple cases
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If u or v is of the form xa or yb, then apply Lemma 3.3 and Theorem 3.15 to
determine if u and v are twisted conjugate. In particular, u ∼ϕ v if and only if:

u = xa, v = xb, a, b have the same parity,

u = yt+mc, v = ys+md, {c, t}, {d, s} both have opposite parity or same parity,

u = xa, v = yt+mc, a even, {c, t} have same parity.

Otherwise, we can assume u, v contain at least one x and y factor.

Step 3: Twisted cyclic geodesics

Apply ϕ-cyclic permutations and geodesic reductions to obtain umin, vmin ∈ CycGeo
ϕ,(3)

,

such that u ∼ϕ umin and v ∼ϕ vmin (existence follows from Proposition 3.2 and
Lemma 3.10). If l(umin) ̸= l(vmin), then Output = False (by Theorem 3.15).

Step 4: Set of representatives

Compute all possible sequences of ϕ-cyclic permutations and equivalent words from
umin, to get a finite set D of minimal length twisted conjugacy representatives. If
vmin ∈ D, then Output = True. Otherwise, Output = False (by Theorem 3.15).

Example 3.17. We illustrate Step 4 of our algorithm, by considering the group
G(3) = ⟨x, y| x2 = y3⟩, and the word u = x−1yx−1y ∈ X∗. Here u ∈ CycGeo

ϕ,(3)
by Corollary

3.9, and Fig. 1 gives the finite set D of words obtained by computing all possible ϕ-cyclic
permutations and equivalent words. Here the arrowed lines indicate ϕ-cyclic permutations.

3.3. Complexity of algorithm. We make some observations to improve our algorithm,
which will lead to linear time complexity. We recall Example 3.17 as a motivating example.
Rather than computing all words of minimal length in D, we could have instead computed
all ϕ-cyclic permutations from u ∈ CycGeo

ϕ,(3)
only. Then, if we want to check if v ∈ D, we

simply check if v is equal, as group elements, to a word u′ ∈ CycGeo
ϕ,(3)

obtained from u

via ϕ-cyclic permutations. This step runs in linear time, based on the length of u, and we
will go on to show that this idea can be applied in all cases.

First, recall that for non-unique geodesics in CycGeo
ϕ,(3)

, the only rewrite which can occur

is that of the form in Eq. (3.2). This allows us to make the following observation.

Proposition 3.18. Let u = xa1yb1 . . . xaτ ybτ , v = xα1yβ1 . . . xατ yβτ ∈ CycGeo
ϕ,(3)

. If

u ∼ϕ v, then (β1, . . . , βτ ) = (−bi, . . . ,−bn, b1, . . . , bi−1), for some 1 ≤ i ≤ τ .

Proof. By Theorem 3.15, u ∼ϕ v if and only if u and v are related by a sequence of ϕ-cyclic
permutations and equivalent geodesics. Since Eq. (3.2) does not affect any y factors, we can
assume y factors are changed only by ϕ-cyclic permutations.
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xy−1x−1y

y−1xy−1x−1

xy−1xy−1

yxy−1x

x−1yxy−1

yx−1yx

x−1yx−1y

y−1x−1yx−1

x−1y−1xy

y−1x−1y−1x

x−1y−1x−1y−1

yx−1y−1x−1

xyx−1y−1

yxyx−1

xyxy

y−1xyx

=G

=G

=G

=G

Figure 1: Set D obtained in Example 3.17.

Proposition 3.18 allows us to add the following information to Step 3 of our algorithm.

Step 3: Twisted cyclic geodesics

Let umin = xa1yb1 . . . xaτ ybτ and vmin = xα1yβ1 . . . xατ yβτ . If
(β1, . . . , βτ ) ̸= (−bi, . . . ,−bτ , b1, . . . , bi−1) for all 2 ≤ i ≤ τ , then Output = False.

We can also adapt Step 4 of our algorithm, to find group elements of minimal length for each
twisted conjugacy class, rather than words of minimal length. We find that the number of
group elements of minimal length for each twisted conjugacy class is quadratic, with respect
to word length.

Proposition 3.19. Let umin ∈ CycGeo
ϕ,(3)

, where l(umin) = n. Then the number of minimal

length group elements v ∈ CycGeo
ϕ,(3)

, such that u ∼ϕ v, is bounded above by n(n+ 1).

Proof. First recall from Remark 3.13 that to check if two words u, v ∈ CycGeo
ϕ,(3)

represent

the same group element, then we only need to check that the exponents of y factors of u
and v match exactly, and that the number of x terms in u equals the number of x terms
in v (or analogously, the number of x−1 terms in u equals the number of x−1 terms in v).
Combined with Theorem 3.15, we can find unique representatives for each group element in
a twisted conjugacy class as follows.
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Let umin = xa1yb1 . . . xamybm , i.e. l(umin) = n = m+
∑m

i |bi|. We can write umin in a block
decomposition of the form

u =
(
#yb1

)(
#yb2

)
. . .

(
#ybm

)
,

where each # represents an x±1 term. Note if u starts with a y factor, then we can apply a
ϕ-cyclic permutation to obtain the correct form. Suppose the number of x terms in u equals
q ≤ m. Consider the following ϕ-cyclic permutation of u:

u′ =
(
#y−bm

)(
#yb1

)
. . .

(
#ybm−1

)
.

Here the number of x terms in u′ must be equal to either q − 1 or q + 1, depending on
whether we move an x or x−1 from the last block in u. In particular, each time we apply a
ϕ-cyclic permutation of a block, we either increase or decrease the number of x terms by 1.
Moreover, the number of x terms in any element is bounded below by 0 and above by m.

In total, we obtain (m + 1)(m +
∑m

i |bi|) group elements, by computing all ϕ-cyclic per-
mutations of umin using this block decomposition. To see this, we group together block
decomposition’s which only differ by one ϕ-cyclic permutation of a block. These pairs have
either odd or even number of x terms, which gives us m+1 group elements. Summing across
all y powers, to include all possible ϕ-cyclic permutations, we get (m + 1)(m +

∑m
i |bi|)

group elements. Since m < n, this value has an upper bound of n(n+ 1).

This already improves our algorithm to O(n3), in that at Step 4, we can compute all minimal
length group elements which are twisted conjugate to umin, and then check if vmin represents
one of these group elements or not. This can be improved further to obtain a linear time
Step 4 of our algorithm as follows.

Step 4: Checking group elements

For w = xa1yb1 . . . xaτ ybτ ∈ CycGeo
ϕ,(3)

, define

X(w) :=

{
(0, 2, 4, . . . , τ) #x-terms in u is even,

(1, 3, 5, . . . , τ − 1) #x-terms in u is odd,

if τ is even, and define analogously form odd. We compute all ϕ-cyclic permutations
of uminCycGeoϕ,(3) using the block decomposition, whilst keeping track of how many

x terms can exist for each element we obtain (for each ϕ-cyclic permutation, we
switch between odd and even). For each group element w ∈ CycGeo

ϕ,(3)
obtained

via ϕ-cyclic permutations from umin, we check whether the exponents of y factors
of w and vmin match exactly, and that X(w) = X(vmin). If this holds for some w,
then Output = True. Otherwise, if no such w exists, then Output = False .

Example 3.20. Recall Example 3.17. Herem = 2 and (m+1)(m+
∑m

i=1 |bi|) = 3(2+2) = 12
from Proposition 3.19, and so there are 12 minimal length group elements within the set
D. We list them in Table 1, by taking the minimal shortlex representative for each group
element (where x < x−1 < y < y−1), and also recording the parity of the number of x-terms
in each group element.
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Group element Parity of x terms Group element Parity of x terms

xy−1x−1y Odd y−1xy−1x−1 Odd
xy−1xy−1 Even x−1y−1x−1y−1 Even
yxy−1x Even yx−1y−1x−1 Even
xyx−1y−1 Odd yxyx−1 Odd
x−1yx−1y Even xyxy Even
y−1x−1yx−1 Even y−1xyx Even

Table 1: Group elements from Example 3.17

We apply our adapted Step 4 to the words umin = xy−1x−1y, vmin = yx−1y−1x−1. Here
umin ∼ϕ vmin (see Fig. 1). After computing all possible ϕ-cyclic permutations from umin, we
obtain 8 words:

xy−1x−1y ↔ y−1xy−1x−1 ↔ xy−1xy−1 ↔ yxy−1x

↔ x−1yxy−1 ↔ yx−1yx↔ x−1yx−1y ↔ y−1x−1yx−1.

Consider w = yxy−1x from this list. Then the y-exponents of w and vmin match exactly, and
X(w) = X(vmin) = {0, 2}, and so our algorithm will output True as required. Alternatively,
consider vmin = yxy−1x−1. Again by Fig. 1, umin ̸∼ϕ vmin. Here {0, 2} = X(w) ̸= X(vmin) =
{1}, and since w is the only word from this list with matching y-exponents to vmin, then
our algorithm will output False as required.

We are now able to determine linear complexity for our adapted algorithm.

Proposition 3.21. The TCPϕ(G(m)), where m is odd, m ≥ 3, with respect to ϕ : x 7→
x−1, y 7→ y−1, is solvable in linear time.

Proof. Let u, v ∈ X∗ be our input words, where |u|+ |v| = n. Step 1 of our algorithm runs
in linear time, by checking the conditions from Table 2, and applying the relations from
G(m) (see Proposition A.1). Linearity is also clear in Step 2.

For Step 3, we need to analyse the complexity of applying the rewrite rules (R1)-(R5). (R1)
takes at most n− 1 time, by reading off the Garside element. To apply (R2) or (R3), we are
checking the first and last terms from the free product and reducing by two each time. After
all possible reductions, we have taken at most n steps to do so. At this stage we may have
to reapply (R1), but we only have to do this once. Finally for (R4) and (R5), we only read
the first and last letters of the free product, and the Garside element of length one, so we
are only reading three letters at this stage here. Overall this gives a complexity of 3n+ 1.

Next we need to understand the complexity of finding a minimal length element in CycGeo
ϕ,(3)

,

using Lemma 3.10. This only requires us to check for any y±(k+1) terms, and apply ϕ-cyclic
permutations and rewriting rules. The complexity of this step is bounded above by 2n.

Finally for Step 4, we use the fact that there exists a quadratic time algorithm to check
if two words are cyclic permutations of each other via a two-way deterministic pushdown
automaton (2DPDA) [1, Example 9.11], which can then be adapted to a linear time algorithm
on a RAM machine [1, Theorem 9.10]. To check if umin ∼ϕ vmin, we need to check that the
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y-terms are a ϕ-cyclic permutation of each other, and that the differences in the x-terms
differ by an even number. We therefore adapt our original algorithm on the 2DPDA as
follows.

First, we adjust the input tape, so that we can determine if the y-terms are a ϕ-cyclic
permutation of each other. Then we add a counter which, when reading x±1 terms, keeps
track of when they differ from the symbol on the pushdown list. The 2DPDA accepts a word
if and only if the y-terms are a ϕ-cyclic permutation of each other, and the counter is equal
to 0 (mod 2) after reading a word. This extra step of adding a counter to our 2DPDA can
be achieved in constant time, and so Step 4 takes linear time overall on a RAM machine.

4. Algorithm for the twisted conjugacy problem

We now construct an algorithm to solve the TCP(G(m)) for odd dihedral Artin groups.
To achieve this, we first require a solution to another decision problem, known as the
simultaneous conjugacy problem (SCP).

Definition 4.1. Let G = ⟨X⟩. For fixed k ∈ N, the k-simultaneous conjugacy problem takes
as input two k-tuples (y1, . . . , yk), (z1, . . . , zk), where each yi, zi ∈ X∗, and decides whether
there exists an element g ∈ G such that g−1yig =G zi for all i = 1, . . . , k. We say this is an
effective solution if such an algorithm also produces a conjugator g ∈ G.

This decision problem is also known as conjugacy for finite lists, and some results on this
decision problem can be found in [15, 16]. Note there exists finitely presented groups with
solvable conjugacy problem and unsolvable SCP [4]. The following result will be useful later.

Theorem 4.2. The k-simultaneous conjugacy problem is solvable in dihedral Artin groups,
for all k ∈ N. Moreover, this solution is effective.

Proof. Let G(m) = ⟨X⟩, where X is the free product generating set, and let (y1, . . . , yk),
(z1, . . . , zk) be k-tuples where each yi, zi ∈ X∗. We first assume that each word w ∈ X∗ from
these tuples is of the form w = (w1, w2), where w1 is a free product normal form modulo
the centre, and w2 is a power of the central generator.

Let yi = (yi,1, yi,2), zi = (zi,1, zi,2) for some 1 ≤ i ≤ k. By [13, Proposition 3.1], checking
if yi and zi are conjugate is equivalent to checking that yi,2 = zi,2, and that yi,1 is a cyclic
conjugate of zi,1. In particular, the SCP for G(m) is equivalent to solving the SCP for
Z2 ∗ Zm when m is odd, or Zm ∗ Z when m is even. In both cases, these are hyperbolic
groups, which have solvable SCP by [4, Theorem A]. Moreover, this solution is effective.

The complexity for solving the SCP in hyperbolic groups was later improved in [5, Theorem
1]. We will use these complexity estimates to determine the overall complexity of the twisted
conjugacy problem in odd dihedral Artin groups.
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Proposition 4.3. Let G(m) = ⟨X⟩ be an odd dihedral Artin group. Let ψ = ιgϕ ∈
Aut(G(m)). Then there exists an algorithm which takes as input ψ ∈ Aut(G(m)), and
determines the element g ∈ G(m) defined by ιg ∈ Inn(G(m)).

Moreover, the algorithm runs in time O(2µ), where µ = 4 · max{1, l(ψ(x)), l(ψ(y))}. In
particular, the algorithm runs in linear time based on the generators x, y ∈ X and the
automorphism ψ ∈ Aut(G(m)) given.

Proof. By Theorem 2.9, we have two cases to consider. To check if ϕ ∈ [ψ] is trivial, we
need to check if there exists g ∈ G(m) such that g−1xg =G(m) ψ(x) and g

−1yg =G(m) ψ(y).
This is an example of the SCP in G(m), for which we can determine the element g ∈ G(m)
by Theorem 4.2. Otherwise, suppose ϕ ∈ Aut(G(m)) is of the form in Eq. (2.3). In this case,
we need to check if there exists g ∈ G(m) such that g−1ϕ(x)g = g−1x−1g =G(m) ψ(x), and

g−1ϕ(y)g = g−1y−1g =G(m) ψ(y). Again the element g ∈ G(m) can be determined using the
SCP.

For complexity, the inputs of the SCP algorithm are (xεx , yεy), (ψ(x), ψ(y)), where εx, εy ∈
{±1}. By [5, Theorem 1], the algorithm has complexity as stated, noting that we have to
account for all 4 cases for the different values of εx and εy.

Theorem 4.4. The twisted conjugacy problem TCP(G(m)) for dihedral Artin groups, where
m is odd, m ≥ 3, is solvable in linear time.

Proof. Let u, v ∈ X∗, and let ψ = ιgϕ ∈ Aut(G(m)) be our inputs. We want to decide
whether there exists w ∈ X∗ such that v =G(m) ψ(w)

−1uw. We will use Remark 2.3 to
reduce the problem to twisted conjugacy with respect to outer automorphisms. Recall
ιg ∈ Inn(G(m)), i.e. ιg(w) =G(m) g

−1wg for some g ∈ G(m), which can be determined in
linear time by Proposition 4.3. We need to check two cases:

(1) u ∼ιg v: Here v =G(m) ιg(w)
−1uw = g−1w−1guw. Rearranging gives gv =G(m)

w−1(gu)w, and so this case reduces to solving the conjugacy problem with respect
to (gu, gv). Since g is known, this is solvable in linear time by [13, Proposition 3.1].

(2) u ∼ιgϕ v, where ϕ ∈ Aut(G(m)) is of the form in Eq. (2.3): Here v =G(m) g
−1ϕ(w)−1guw.

Rearranging gives gv =G(m) ϕ(w)
−1(gu)w, and so this case reduces to solving the twisted

conjugacy problem TCPϕ(G(m)) with respect to ϕ. This is solvable in linear time by
Proposition 3.21.

5. Conjugacy problem in extensions of G(m)

The aim of this section is to prove the following.

Theorem 5.1. Every finitely generated subgroup A ≤ Aut(G(m)), when m is odd, is orbit
decidable.
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This will allow us to apply a criteria from [3] to find new examples of group extensions of
odd dihedral Artin groups with solvable conjugacy problem. We recall this criteria here.

Theorem 5.2. [3, Theorem 3.1] Let

1→ F
α−→ G

β−→ H → 1

be an algorithmic short exact sequence of groups such that

(i) F has solvable twisted conjugacy problem,
(ii) H has solvable conjugacy problem, and
(iii) for every 1 ̸= h ∈ H, the subgroup ⟨h⟩ has finite index in its centralizer CH(h), and there

is an algorithm which computes a finite set of coset representatives zh,1, . . . zh,th ∈ H,
i.e.

CH(h) = ⟨h⟩zh,1 ⊔ · · · ⊔ ⟨h⟩zh,th .

Then the conjugacy problem for G is decidable if and only if the action subgroup
AG = {φg | g ∈ G} ≤ Aut(F ) is orbit decidable.

Definition 5.3. Let A ≤ Aut(G) for a group G = ⟨X⟩. The orbit decidability problem for
A, denoted OD(A), takes as input two words u, v ∈ X∗, and decides whether there exists
ϕ ∈ A such that v ∼ ϕ(u).

When m is odd, we recall that |Out(G(m))| = 2 by Theorem 2.9, so we can apply a similar
technique as [12, Theorem 5.1] to prove Theorem 5.1.

Proof of Theorem 5.1. Let ψ1, . . . ψs ∈ Aut(G(m)) be given, and consider A = ⟨ψ1, . . . ψs⟩ ≤
Aut(G(m)). For each i = 1, . . . , s, compute gi ∈ G(m) such that ψi = ιgiϕi, where
ιgi ∈ Inn(G(m)) and ϕi ∈ [ψi]. Given two words u, v ∈ X∗, we want to decide whether
v ∼ ψ(u) for some ψ ∈ A.

If [ψi] is trivial, for every i, then A ≤ Inn(G(m)), and so the set {ψ(u) | ψ ∈ A} is a
collection of conjugates of u. Here our problem reduces to deciding if v is conjugate to u,
which is decidable by [13, Proposition 3.1]. Otherwise, the set {ψ(u) | ψ ∈ A} is a collection
of conjugates of u and ϕ(u), where ϕ ∈ Aut(G(m)) as in Eq. (2.3). We therefore need to
decide whether v is conjugate to either u or ϕ(u), which is decidable by two applications of
[13, Proposition 3.1].

Our final result is then immediate from Theorem 4.4, Theorem 5.1 and Theorem 5.2.

Theorem 5.4. Let G = G(m) ⋊H be an extension of an odd dihedral Artin group by a
finitely generated group H which satisfies conditions (ii) and (iii) from Theorem 5.2 (e.g.
let H be torsion-free hyperbolic). Then G has decidable conjugacy problem.
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Appendix A. Geodesic normal forms

Table 2 gives a summary of geodesic normal forms for G(m), originally derived from [10].
We provide details on how to find geodesic representatives in G(m) in linear time.

Proposition A.1. Let w ∈ X∗ represent an element of G(m). Then we can determine, in
linear time, a geodesic representative u = xa1yb1 . . . ybτ∆c, where ∆ =G x

2 =G y
2k+1, with

conditions given in Table 2, such that w =G u.
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Proof. Our first step is to rewrite w ∈ X∗ into a Garside normal form. This gives us a
representative w1 =G w, where

w1 = xa1yb1 . . . ybτ∆c,

such that τ ∈ Z>0, c ∈ Z, and{
0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
0 ≤ bi ≤ 2k (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

This is achieved by reading w once, and either applying free cancellation to each factor, or
moving any x±2 or y±(2k+1) terms to the Garside element. Then, we read the word again,
and for every xai and ybi term, such that ai, bi < 0, we replace these terms by xai+2∆−1 and
ybi+2k+1∆−1 respectively, and move all ∆−1 terms to the Garside element.

Next, we rewrite w1 into a modified Garside normal form. This gives us a representative
w2 =G w, where

w2 = xa1yb1 . . . ybτ∆c,

such that τ ∈ Z>0, c ∈ Z, and{
0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−(k − 1) ≤ bi ≤ k + 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

This is achieved by reading w1, and for every ybi term such that bi ≥ k + 2, we replace each
ybi term with ybi−(2k+1)∆, and move all ∆ terms to the Garside element. If c ≥ 0, then w2

is a geodesic of Type (1), (3+) or (3+ ∩ 3−). For the remaining cases, we define the following
quantities based on our modified normal form w2. Let

Ra := {i | ai > 0}, ra := |Ra|,
Rb := {j | k ≤ bj ≤ k + 1}, rb := |Rb|,
rw2 := ra + rb.

If c < 0 and rw2 ≤ −c, then replace all xai , such that i ∈ Ra, by xai−2∆, and similarly

replace all ybj , such that j ∈ Rb, by ybj−(2k+1)∆, and move all ∆ terms to the Garside. This
gives us a geodesic of Type (2) or (3−). If c ≤ 0 and rw2 > −c, then first rewrite all terms
as before from Ra and Rb, until the Garside element is empty. This leaves us with a word
w3 =G w, where

w3 = xa1yb1 . . . ybτ ,

such that {
−1 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−(k + 1) ≤ bi ≤ k + 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

If w3 ∈ (30+U) ∪ (30−U) ∪ (30+N) ∪ (30−N) ∪ (30∗) then we are done. Otherwise, we read
w3 and determine the following values:

α+ := #x terms in w3, α− := #x−1 terms in w3,

β+ := #yk+1 terms in w3, β− := #y−(k+1) terms in w3.

We note that for ϵ ∈ {±1}, then any pairs
(
yϵ(k+1), y−ϵ(k+1)

)
can be rewritten as

(
y−ϵk, yϵk

)
,

using the rewrite rule

syϵ(k+1)ty−ϵ(k+1)z =G sy
ϵ(2k+1)y−ϵkty−ϵ(2k+1)yϵkz =G sy

−ϵktyϵkz,
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where s, t, z ∈ X∗. After rewriting all possible pairs of this form in w3, we have a word
where either β+ = 0 or β− = 0. If β+ = β− = 0, then our word is of Type (30+U), (30−U)
or (30∗).

Suppose β+ = 0 and β− > 0. If α+ = 0, then w3 is of Type (30−N). Otherwise, if α+ > 0,

then rewrite all pairs
(
x, y−(k+1)

)
to (x−1, yk) as far as possible, using the rewrite rule

defined in Eq. (3.1). This leaves us with a word of Type (30−N) or (30∗). Now suppose
β+ > 0 and β− = 0. If α− = 0, then w3 is of Type (30+N). Otherwise, if α− > 0, then
rewrite all pairs (x−1, yk+1) to (x, y−k) as far as possible, again using Eq. (3.1), which leaves
us with a word of Type (30+N) or (30∗).

This covers all cases, and we obtain a geodesic representative in linear time.

Type Conditions on w = xa1yb1 . . . xaτ ybτ∆c, where τ ∈ Z>0 Unique/Non-unique

(1)
c > 0,

0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−(k − 1) ≤ bi ≤ k + 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

Unique(2)
c < 0,

−1 ≤ ai ≤ 0 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−(k + 1) ≤ bi ≤ k − 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

(3+)
c = 0,

0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−(k − 1) ≤ bi ≤ k + 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

(3−)
c = 0,

−1 ≤ ai ≤ 0 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−(k + 1) ≤ bi ≤ k − 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1).

(3+ ∩ 3−) w = yb where −(k − 1) ≤ b ≤ k − 1.

(30+U)

c = 0
0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−k ≤ bi ≤ k (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1),

There exist at least one y−k term.

(30−U)

c = 0
−1 ≤ ai ≤ 0 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−k ≤ bi ≤ k (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1),

There exist at least one yk term.

(30+N)

c = 0
0 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),

−k ≤ bi ≤ k + 1 (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1),
There exist both y−k and yk+1 terms.

Non-unique

(30−N)

c = 0
−1 ≤ ai ≤ 0 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),

−(k + 1) ≤ bi ≤ k (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1),

There exist both yk and y−(k+1) terms.

(30∗)

c = 0
−1 ≤ ai ≤ 1 (1 ≤ i ≤ τ), ai ̸= 0 (2 ≤ i ≤ τ),
−k ≤ bi ≤ k (1 ≤ i ≤ τ), bi ̸= 0 (1 ≤ i ≤ τ − 1),

There exist both x, x−1 terms.

Table 2: Geodesic normal forms
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