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Abstract. We study the growth of conjugacy classes in finitely generated virtually abelian
groups. That is, the number of elements in the ball of radius n in the Cayley graph which
intersect a fixed conjugacy class. In the class of virtually abelian groups, we prove that
this function is always asymptotically equivalent to a polynomial. Furthermore, we show
that in any affine Coxeter group, the degree of polynomial growth of a conjugacy class is
equivalent to the reflection length of any element of that class.

1. Introduction

Given a finitely generated group G generated by some set S, every element in G can be
represented by some word over the alphabet S ∪ S−1. For an element g ∈ G, we define the
length ℓS(g) of g to be the minimal length of all words which represent g with respect to the
generating set S. This naturally leads to the study of the growth function of G, which counts
the number of elements of length at most n. The asymptotic properties of growth functions
of groups have been extensively studied with a highlight being Gromov’s celebrated theorem
[7] characterising groups of polynomial growth as the virtually nilpotent groups.

The growth function can be generalised by restricting our attention to subsets of interest.
In particular, taking some subset U of G, we let βU,S(n) be the number of elements in U
whose length is at most n and look at how this number changes as n increases. The growth
of subgroups of groups has been studied by a number of authors [3, 5, 14] but much less
attention has been paid to other interesting subsets.

In this article we focus our attention on conjugacy classes in virtually abelian groups.
In particular, we take a conjugacy class C and we look at the growth function of C as a
subset of G. To this end, we prove the following theorem.

Theorem 3.8. Let G be a finitely generated virtually abelian group. Then every conjugacy
class has polynomial growth.
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We emphasise that this is not to be confused with the conjugacy growth function, which
counts the number of conjugacy classes intersecting the ball of radius n. The conjugacy
growth function in virtually abelian groups was studied in [6]. Combinatorial properties
including growth of other subsets of virtually abelian groups are explored in [4], and as
noted in Remark 3.9, Theorem 3.8 also follows from general results in that article. However,
the method of proof we use here is much more direct, and as we will see, allows for the
degree of polynomial growth to be explicitly calculated.

To the authors’ knowledge, the first appearance of the growth of a conjugacy class is
in [13], where it appears as a special case of the ‘orbital counting problem in conjugacy
classes’. The authors of that paper are interested in examples of groups where all non-trivial
conjugacy classes have equivalent growth functions, as well as the exponential growth rate of
the function. They show that in the cases of hyperbolic groups, and the integer Heisenberg
group, all infinite conjugacy classes have the same growth. In the present paper we show
that this is not the case in general for virtually abelian groups (see Proposition 3.10), while
providing an example of where it does hold (Example 3.11).

As an example of the growth function of conjugacy classes in virtually abelian groups,
we consider the affine Coxeter groups. It turns out that the polynomial growth is directly
related to the reflection length. For an element w in an affine Coxeter group W with simple
reflections S, we decompose w into a translation part t and a finite part u where w = tu.
The reflection length ℓR(w) of w is the length with regards to the set of all reflections instead
of just the simple reflections. This leads us to our second main theorem of this article.

Theorem 4.11. Let W be an affine Coxeter group and w = tu an arbitrary element in W
decomposed as a translation part and a finite part. Then the growth of the conjugacy class
with respect to the generating set S is equivalent to nℓR(u).

This article is organised in the following way. We start by giving preliminary definitions
and basic results in group theory and growth in Section 2. In Section 4, we give background
definitions and results on affine Coxeter groups. The affine Coxeter groups are a particularly
nice class of virtually abelian groups as they have a rich geometric structure to them.
Section 3 is then devoted to showing our two main results: (1) that the growth function of
conjugacy classes in virtually abelian groups is polynomial and (2) that the growth function
of the conjugacy class of an element in an affine Coxeter group is polynomial with degree
equal to the reflection length of its finite part.

2. Definitions and basic results

We begin by recalling some standard definitions in group theory and growth functions. The
interested reader is referred to [10] and [11] for a more thorough introduction to the growth
of groups.

2.1. Growth in groups. We start by giving some basic notions on words representing
elements of a group and the growth rate of a set in relation to a group.

Definition 2.1. Let G be a finitely generated group and S a choice of finite generating
set. We let

{
S ∪ S−1

}⋆
denote the words over the alphabet S and its inverses, including

the empty word. Given a word w ∈
{
S ∪ S−1

}⋆
we let |w| denote the length of the word w

and we write w =G g if w represents g in the group G. Many words can represent the same
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element, but there will always be some word of minimal length representing a given g. The
word length of an element g ∈ G with respect to S is then defined to be this minimal length

ℓS(g) = min
{
|w| : w ∈ {S ∪ S−1}∗, w =G g

}
.

If there is no ambiguity in the generating set, we will write ℓ(g) as a shorthand for ℓS(g).
The length of elements can be extended to the word metric on G via the distance function
given by dG,S(g, h) = ℓS(g

−1h). We write BG,S(n) = {g ∈ G : ℓS(g) ≤ n} for the metric
n-ball in G with respect to S. If there is no ambiguity in the group or generating set, we
will use B(n) to represent BG,S(n). Let U be any subset of G. We define the growth of U
in G as follows:

βU,S(n) := |{g ∈ U : ℓS(g) ≤ n}| = |U ∩BG,S(n)|.
As before, if there is no ambiguity in the set S, the group G or the subset U , instead of
βU,S(n) we will write βU (n). When U = G this is the familiar notion of the (cumulative)
growth function of a group.

The following lemma shows that the number of elements in the n-ball is the same,
regardless of the choice of centre point.

Lemma 2.2. Fix any element h ∈ G. Then |{g ∈ G : dG,S(h, g) ≤ n}| = βG(n).

Proof. For h, x, y ∈ G we have dG,S(x, y) = ℓS(x
−1y) = ℓS(x

−1h−1hy) = dG,S(hx, hy), and
so the word metric is invariant under left multiplication. In other words dG,S(1, x) ≤ n if
and only if dG,S(h, hx) ≤ n and we have a length-preserving bijection between the elements
of the n-ball centred at 1 and the elements of the n-ball centred at h.

Note that the growth of a subgroup U of G is often referred to as relative growth, since
the subgroup may itself be finitely generated and therefore have an intrinsic notion of growth.
In this paper, we study subsets that are not necessarily subgroups and so we drop the term
‘relative’ since the natural growth is the one inherited from the ambient group.

We recall the usual notion of equivalence of growth functions. Let f, g : N → N be two
functions. We write f ≼ g if there exists λ ≥ 1 such that

f(n) ≤ λg(λn+ λ) + λ

for all n ∈ N. If f ≼ g and g ≼ f then we write f ∼ g and say that the functions are
equivalent . Note that this defines an equivalence relation. We write f ≺ g if f ≼ g but it is
not the case that f ∼ g.

It is a standard fact that, up to equivalence, the growth of a group does not depend on
the choice of finite generating set (since every element written as a word of one generating
set can be written as a word of bounded length in another generating set). The following
lemma is easily proved in the same way.

Lemma 2.3. Up to equivalence, the growth of a subset U in G does not depend on the
choice of generating set for G.

We say that a subset U has polynomial growth in G, if βU (n) ∼ nd for some positive
integer d. We will also make use of the following elementary fact.

Lemma 2.4. Let U and V be subsets of a group G. Then the growth of U ∪ V in G is
equivalent to the maximum (with respect to ≼) of the growths of U and V .

Proof. Without loss of generality, suppose that βU ≼ βV . Then we have βV ≼ βU∪V ≼
βU + βV ∼ βV , and so βV ∼ βU∪V .
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In Lemma 2.3 we saw that changing the generating set does not change the asymptotics
of the growth function. Furthermore, just as with the standard growth function, the growth
of a subset is robust enough to be an invariant of the usual large-scale geometry of a group.

Recall the following definition of a quasi-isometric embedding of metric spaces. Let
(X, d) and (Y, d′) be metric spaces. A function f : X → Y is a quasi-isometric embedding if
there exists a constant λ ≥ 1 such that for every x, y ∈ X we have

1

λ
d(x, y)− λ ≤ d′(f(x), f(y)) ≤ λd(x, y) + λ.

Any subset of a finitely generated group can be given the structure of a metric space via
Definition 2.1 and therefore we may consider quasi-isometric embeddings between subsets of
finitely generated groups. It is a standard result (see, for example, [10, Proposition 6.2.4])
that quasi-isometric groups have equivalent growth functions. The next result can be proved
in the same way, using Lemma 2.2.

Proposition 2.5. Let f : G → H be a quasi-isometric embedding of finitely generated
groups. Let U ⊂ G. Then the growth of U in G is equivalent to the growth of f(U) in H,
i.e. βU ∼ βf(U).

A special case of Proposition 2.5 is the following.

Corollary 2.6. Let U be any subset of a group G. Then for any g ∈ G, the subset
Ug = {ug : u ∈ U} has equivalent growth to U .

The subject of this article is conjugacy class growth, the growth function βC(n) for a
fixed conjugacy class C of some group. By Lemma 2.3, this does not depend on the choise
of generating set.

The main class of groups in which we will study conjugacy class growth are virtually
abelian groups. A well-known example of such groups are affine Coxeter groups which we
define in Section 4.

3. Virtually abelian groups

Recall that, given some property P , a group is said to be virtually P if it has a finite-index
subgroup with property P . By a famous result of Bass and Guivarc’h [1], all finitely generated
virtually nilpotent groups have polynomial growth. Therefore the conjugacy classes of such
a group have growth bounded above by a polynomial. In the case of virtually abelian groups,
we show that the conjugacy class growth function is always equivalent to a polynomial, thus
excluding the possibility of growth functions that lie between polynomials (such as n3/2,
n log n).

3.1. Virtually abelian groups. We start by looking at the conjugacy class growth of
virtually abelian groups in general.

Remark 3.1. If G is virtually abelian, it is a standard fact that G contains a finite-index
normal abelian subgroup (for example, the normal core of any finite-index abelian subgroup,
the intersection of all conjugates of that subgroup, see for example [11, Chapter 2]).

The proof of the following proposition is a standard exercise.
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Proposition 3.2. The growth function of the free abelian group Zr is equivalent to nr, for
all positive integers r.

Definition 3.3. Let G be a group with a subgroup H. For any g ∈ G, define

[H, g] = ⟨[h, g] | h ∈ G⟩.

Lemma 3.4. Let G be a group with a normal abelian subgroup H. Then for any g ∈ G,

[H, g] = {[h, g] : h ∈ H} .
In other words, every element of [H, g] has commutator length equal to one.

Proof. Let h, h′ ∈ H. By the normality of H we have gh−1g−1 ∈ H, and so h′ and gh−1g−1

commute, and thus we have

[h, g][h′, g] = hgh−1g−1h′gh′−1g−1 = hh′gh−1g−1gh′−1g−1.

Cancelling the g−1g and noting that h−1h′−1 = (h′h)−1 = (hh′)−1 as H is abelian gives

[h, g][h′, g] = hh′gh−1h′−1g−1 = [hh′, g],

which finishes the proof.

Remark 3.5. The following characterisation of conjugacy classes is similar to that used in
[6, Section 5]. Furthermore, after a preprint version of the current paper was published on
arXiv, a preprint of Milićević, Schwer and Thomas [12] appeared, using a similar description
of conjugacy classes, in the case of affine Coxeter groups, with so-called ‘Mod-sets’ in place
of subgroups of commutators (see Theorem 2.12 in that paper). See also Remark 4.9.

For any group element g, write C (g) =
{
hgh−1 : h ∈ G

}
for its conjugacy class.

Lemma 3.6. Let G be a virtually abelian group, and let H be a finite-index normal abelian
subgroup of G. Let U be any set of coset representatives for H. Then the conjugacy class of
any g ∈ G is a union of cosets of the form

C (g) =
⋃
v∈U

[H, vuv−1]vgv−1,

for a fixed u ∈ U .

Proof. We have g = hu for some h ∈ H, u ∈ U . The conjugacy class of g is then

C (g) = C (hu) =
{
xvhuv−1x−1 : x ∈ H, v ∈ U

}
=
{
xvhv−1vuv−1x−1 : x ∈ H, v ∈ U

}
=
⋃
v∈U

{
xvhv−1vuv−1x−1vu−1v−1 : x ∈ H

}
vuv−1

=
⋃
v∈U

{
xvuv−1x−1vu−1v−1 : x ∈ H

}
vhv−1vuv−1

=
⋃
v∈U

{
[x, vuv−1] : x ∈ H

}
vhuv−1

=
⋃
v∈U

[H, vuv−1]vgv−1,
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where we have used normality of H in G in the fifth equality and Lemma 3.4 in the last
equality.

Before we prove the main theorem, we give a short lemma.

Lemma 3.7. Let G be a finitely generated free abelian group and let H be any subgroup of
G. The inclusion map i : H → G is a quasi-isometric embedding.

Proof. Any subgroup of a free abelian group is itself free abelian, of equal or smaller rank,
so let A = {a1, . . . , ak} be a basis for H. Then there exists a basis B = {b1, . . . , bk, . . . , bl}
for G such that for each 1 ≤ j ≤ k there exists a positive integer λj with i(aj) = λjbj .

In particular, write i(aj) = (x1, . . . , xd) ∈ Zd in terms of the standard basis for G. Then
λj = gcd(|x1|, . . . , |xd|), and bj = (x1/λj , . . . , xd/λj).

Let h ∈ H. Then, writing the group operation additively, there is a unique way to write

h =
∑k

j=1 µjaj , with µj ∈ Z, and so ℓA(h) =
∑k

j=1|µj |. Applying the inclusion map gives

i(h) =
∑k

j=1 µjλjaj , again a sum of basis elements, so ℓB(i(h)) =
∑k

j=1|µjλj |. Combining
these equalities, we have

ℓA(h) ≤ ℓB(i(h)) ≤ λℓA(h),

where λ = maxj λj , which implies that the map i is a quasi-isometric embedding.

Theorem 3.8. Let G be a finitely generated virtually abelian group. Then every conjugacy
class has polynomial growth.

Proof. We may assume that G has a finite-index free abelian normal subgroup H (by first
passing to a free abelian subgroup, and then to its normal core as per Remark 3.1). Then by
Lemmas 3.6 and 2.4 and Corollary 2.6, it is enough to show that the growth of any subgroup
[H, g] in G is polynomial.

By normality of H, [H, g] is contained in H and is therefore free abelian of finite
rank, and so by Proposition 3.2 it has polynomial growth (of degree equal to its rank).
By Lemma 3.7, we have that [H, g] is quasi-isometrically embedded into H. Since H is
a finite-index subgroup of G, it is quasi-isometrically embedded into G, and so [H, g] is
also quasi-isometrically embedded into G. By Proposition 2.5, the growth of [H, g] in G is
equivalent to the growth of [H, g] itself and is therefore polynomial.

Remark 3.9. An alternative and less explicit method of proof would be to observe that
Lemma 3.6 implies that a conjugacy class is an example of a rational subset (the image of a
regular language over the generating set). In [4] it is proved that the growth of any rational
subset of a virtually abelian group has rational generating function, with respect to any
choice of generating set. Any non-decreasing integer-valued sequence with growth in the
polynomial range and rational generating function necessarily has growth equivalent to a
polynomial (see, for example, [15]).

The following proposition demonstrates that there exist groups with any given degree of
polynomial conjugacy class growth.

Proposition 3.10. For any d ∈ N there exists a (virtually abelian) group G such that for
every natural number c ∈ N such that c ≤ d, there is a conjugacy class of G with growth
equivalent to nc.

Proof. Consider the free abelian group Zd = ⟨t1, . . . , td⟩ and extend it by the direct product
of d copies of C2, where the conjugation action of the ith copy negates the ith coordinate of



Vol. 17:1 CONJUGACY CLASS GROWTH IN VIRTUALLY ABELIAN GROUPS 1:7

Zd. In other words, let

G = Zd ⋊ (C2 × · · · × C2)

= ⟨t1, . . . , td, s1, . . . , sd | [ti, tj ] = [si, tj ] = 1 for i ̸= j, s2i = 1, siti = t−1
i si⟩.

So we have

sitjsi =

{
t−1
j i = j

tj i ̸= j.

The set
{
tk11 tk22 · · · tkdd sε11 sε22 · · · sεdd : ki ∈ Z, εj ∈ {0, 1}

}
is a normal form for elements of the

group and conjugation by generators behaves as follows:

sit
k1
1 tk22 · · · tkdd sε11 sε22 · · · sεdd si = tk11 tk22 · · · t−ki

i · · · tkdd sε11 sε22 · · · sεdd

tit
k1
1 tk22 · · · tkdd sjt

−1
i =

{
tk11 tk22 · · · tkdd sj i ̸= j

tk11 tk22 · · · tki+2
i · · · tkdd si i = j

.

Therefore for any natural number c ≤ d, the conjugacy class of the element s1s2 · · · sc is the
coset ⟨t21, t22, . . . , t2c⟩s1s2 · · · sc of the free abelian subgroup ⟨t21, t22, . . . , t2c⟩. This subgroup has
rank c and therefore it and its cosets (by Corollary 2.6) have growth equivalent to nc.

Before we study affine Coxeter groups, we use Lemma 3.6 to calculate the conjugacy
class growth functions of a virtually abelian group which does not split as a semidirect
product of the finite-index abelian subgroup.

Example 3.11. Let K = ⟨a, b | aba−1 = b−1⟩, the fundamental group of the Klein bottle,
which is a non-split extension of the subgroup A = ⟨a, b2⟩ ∼= Z2. This subgroup has index 2
and we choose {1, b} as a set of coset representatives. If g ∈ A then both a and b2 commute
with g. Therefore [g] = {g, bgb−1} and thus the growth of any conjugacy class contained in
A is constant.

If g ∈ Ab then by Lemma 3.6 we have

[g] = [A, b]g ∪ [A, bbb−1]bgb−1 = [A, b]g ∪ [A, b]bgb−1.

Since [a, b] = a2, we have [A, b] = ⟨a2⟩, which is a cyclic direct factor of A, and hence
quasi-isometrically embedded and of linear growth. It follows from Proposition 2.5, Corollary
2.6, and Lemma 2.4, that β[g](n) is linear for conjugacy classes [g] contained in the coset Ab.

4. Affine Coxeter groups

In this section we recall the background details needed on affine Coxeter groups. The reader
is assumed to be familiar with Coxeter groups at the level of the book by Humphreys [8].
Much of the terminology and notation in this section is taken from [9].
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4.1. Reflection length. Given an (arbitrary) Coxeter system (W,S), the set S is called
the set of simple reflections and W is called the Coxeter group. Recall from Subsection 2.1
that the length function ℓS(w) gives the minimal length of words over the alphabet S which
represent w ∈ W . Given a Coxeter system (W,S) we denote by Φ the associated root system
(see [8] for a definition) with positive roots Φ+ and negative roots Φ− = −Φ+.

In this paper we make use of another length function which we describe next. The set of
reflections R is the set of all conjugates to S, i.e., R =

⋃
w∈W wSw−1. The set of reflections

is infinite whenever W is infinite. As with the simple reflections, any element w ∈ W can be
represented by words over the alphabet R. The reflection length ℓR(w) of an element is then
the smallest integer k such that w = r1r2 . . . rk with ri ∈ R. Whenever w = r1 . . . rk such
that ℓR(w) = k then we say that r1 . . . rk is a reduced expression of w over R.

Example 4.1. Suppose that W is the type A2 Coxeter group with simple reflections
S = {s, t}. Recall that being a type A2 Coxeter group implies that we have the following
presentation

W =
〈
S : s2 = t2 = (st)3 = 1W

〉
.

The set of all reflections is then given by R = {s, t, sts}. The following is a table of the
lengths of all elements in W :

w ℓ(w) ℓR(w)
1W 0 0
s 1 1
t 1 1
st 2 2
ts 2 2
sts 3 1

Note that an element might have more than one reduced expression. For example, over
R, st can also be represented as st = ttst = tsts = stss. Similarly, over S, sts can also be
represented as tst.

4.2. Affine Coxeter groups. Let E be a Euclidean space with underlying Euclidean vector
space V . For any two points x, y ∈ E recall that there is a unique vector λ ∈ V such that
x+ λ = y. Let o denote some (fixed) point in E which we call the origin. Then E and V
can be identified by sending each vector λ ∈ V to the point o+ λ ∈ E.

Suppose that V contains a (finite) crystallographic root system Φ with simple system
∆. We generate an affine Coxeter group W using Φ in the following way. For each α ∈ Φ+

and j ∈ Z, let Hα,j = {λ ∈ V : ⟨λ, α⟩ = j} be the affine hyperplane in E where ⟨·, ·⟩ is the
standard inner product. We let AW denote the set of hyperplanes Hα,j for all α ∈ Φ+ and
j ∈ Z. We call AW the hyperplane arrangement associated to W . Each affine hyperplane
Hα,j has a reflection rα,j associated to it which fixes Hα,j pointwise. An affine Coxeter
group W is the group generated by the set of reflections R = {rα,j : α ∈ Φ, j ∈ Z}.

To each affine Coxeter group W is associated a finite part W0 which is the finite
Coxeter group generated by the restriction of the set R to the set R0 = {rα,0 : α ∈ Φ+}.
There is a well-defined projection map π : W → W0 which sends each rα,j to rα,0 which
extends to a group homomorphism. The kernel of this homomorphism is the normal abelian
subgroup denoted by T , isomorphic to Zd, whose elements are called translations and where
W0

∼= W/T and d is equal to the rank of W0 (and of W ). The simple reflections S of W
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are the reflections associated to the bounded alcove assocaited to 1W , S = {rα,0 : α ∈ ∆} ∪
{rα,1 : α ∈ {Φ\∆}}.

Example 4.2. Let W be the type Ã2 affine Coxeter group whose underlying finite part is the
type A2 Coxeter group from Example 4.1, i.e., W0

∼= A2. The group W is then generated by
the simple reflections given by S = {rαr,1, rαs,0, rαt,0}. Letting r = rαr,1, s = rαs,0, t = rαt,0

gives us the presentation

W =
〈
S : r2 = s2 = t2 = (rs)3 = (st)3 = (rt)3 = 1W

〉
.

Then the hyperplane arrangement AW is the set of hyperplanes as given in the following
figure.

The regions in the figure are labelled by elements from W . The finite part W0 is shaded in
blue and the translations are shaded in red (forming a free abelian subgroup of rank 2).

4.3. Movement. Let x ∈ E be some point and let w be some Euclidean isometry. The
motion of x under w is the vector λ ∈ V such that w(x) = x+ λ. The move-set Mov(w) of
w is the collection of all motions of the points in E:

Mov(w) = {λ : w(x) = x+ λ for some x ∈ E} ⊆ V.

It turns out that Mov(w) is an affine subspace of V (see [2, Proposition 3.2]). The fixed
space Fix(w) of w is the set of points x ∈ E such that w(x) = x. It is an (affine) subspace
of E whenever it is nonempty.

An element w ∈ W is called elliptic if its fixed space is nonempty. There are many
equivalent ways to state that an element is elliptic as can be seen in the following theorem.

Theorem 4.3 ([2, Proposition 3.2, Definition 3.3]). For an element w in an affine Coxeter
group W , the following are equivalent

• w elliptic,
• Mov(w) ⊆ V is a linear subspace, and
• Mov(w) contains the zero vector.

For every vector λ ∈ V there is a Euclidean isometry tλ called a translation which sends
x ∈ E to x+ λ. An element in an affine Coxeter group W is a translation if and only if it is
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in the kernel T of the projection map π : W → W0 given in Subsection 4.2. In this case, the
set of translations is precisely the set:

T =

{
tλ : λ =

∑
α∈Φ

2λα

⟨α, α⟩
α, λα ∈ Z

}
. (4.1)

(see [9, Definition 1.20]). This leads to the following proposition.

Proposition 4.4 ([9, Proposition 1.21]). Let tλ be a translation and w ∈ W an arbitrary
element. Then Mov(tλw) = λ+Mov(w) = {λ+m : m ∈ Mov(w)}.

In particular, elliptic elements tell us when the product of reflections is linearly indepen-
dent. For ri ∈ R, let αi be the root associated to ri and Hi be the hyperplane associated to
αi.

Lemma 4.5 ([9, Lemma 1.26]). Let w = r1 . . . rk be a product of reflections in W . If
w is elliptic and ℓR(w) = k then the αi are linearly independent. Conversely, if the αi

are linearly independent, then w is elliptic, ℓR(w) = k, Fix(w) = H1 ∩ · · · ∩ Hk and
Mov(w) = span ({α1, . . . , αk}).

Example 4.6. Continuing from Example 4.2 let w = st be an element in the affine Coxeter
group Ã2. Recall that we can rewrite st as t(sts) and (sts)s. Since w is in the finite part, the
origin is in its fixed space and therefore it is elliptic. Furthermore, we recall that s = rαs,0,
t = rαt,0 and sts = rαr,0. In light of Lemma 4.5, we know that

Mov(w) = span ({αs, αt}) = span ({αs, αr}) = span ({αt, αr}) .
In particular Mov(w) is equal to the entire vector space and therefore contains the origin.
The fixed space is precisely the origin and ℓR(w) = 2.

Let tλ = rsts be a translation as shown in the following figure.

The arrows in the figure represent the vector λ. The translation by λ moves the finite part
from the blue shaded area in the bottom left to the green and red shaded area in the top
right and, in general, moves every point by the vector λ.

Consider next tλw = rsts · st = rs. Then tλw is elliptic since

Fix(tλw) = Hαr,1 ∩Hαs,0 ̸= ∅.

By Lemma 4.5, we also have that

Mov(tλw) = span ({αs, αr}) .
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4.4. Dimensions. Suppose that V is a Euclidean vector space which contains a (finite)
crystallographic root system Φ. Given a root system Φ, a root space is a subspace U ⊆ V
such that U = span (U ∩ Φ). The root space arrangement is the collection of all possible
root spaces in V . By construction, as Φ is finite, there are only a finite number of root
spaces in the root space arrangement. The root dimension dimΦ(A) of a subset A ⊆ V is
the minimal dimension of the root spaces contained in the root space arrangement which
contains A. This allows us to talk about root dimensions of elements.

The dimension dim(w) of an element is the root dimension of its move-set. In other
words, dim(w) = dimΦ(Mov(w)). Let π be the projection map of W to its finite part defined
in Subsection 4.2. Then let e(w) = dim(π(w)) (which we call the elliptic dimension) and
let d(w) = dim(w)− e(w) (which we call the differential dimension). The reason for these
definitions is that they carry a geometric intuition on what the element w is.

Proposition 4.7 ([9, Proposition 1.31]). Let w be an element in an affine Coxeter group.

• Then w is a translation if and only if e(w) = 0.
• Then w is elliptic if and only if d(w) = 0.

In particular, these dimensions precisely describe the reflection length of an element.

Theorem 4.8 ([9, Theorem A]). Let w be an element in an affine Coxeter group. Then

ℓR(w) = 2d(w) + e(w) = 2 dim(w)− dim (π(w))

where d(w) and e(w) are defined above.

The previous theorem implies that if w is in the finite part of W , then ℓR(w) = e(w).
Splitting w into its differential and elliptic dimensions allows for a factorisation into a
translation and an elliptic part w = tλu which is called a translation elliptic factorisation
of w. Note that these factorisations are not unique in general. We will make use of this
factorisation when looking at the growth of conjugacy classes in affine Coxeter groups.

Recall from Subsection 4.2 that the projection map π : W → W0 has as a kernel the
subgroup of translations T ,i.e., W0

∼= W/T . As T is finite-index abelian, W is virtually
abelian. In particular, since T is a normal subgroup and W0 ∩ T = {1W } this translation
elliptic factorisation implies we have the following semidirect product W ∼= T ⋊W0. We
discuss conjugacy class growth in relation to virtually abelian groups in the next section
and use affine Coxeter groups as an example.

4.5. Conjugacy class growth. Familiar examples of virtually abelian groups are provided
by the affine Coxeter groups which were defined in full detail in Section 4. Since every
affine Coxeter group W has the form W ∼= T ⋊W0 where T ∼= Zd is the free abelian normal
subgroup of translations and W0 is the projection of W to its finite part, we have that T is
a finite index subgroup and so W is itself virtually abelian. Since it’s also finitely generated,
this allows us to use the lemmas from the previous subsection. In this subsection we give a
precise formula for the growth function of a conjugacy class of an arbitrary affine Coxeter
group.

Remark 4.9. Note that the idea of the proof of the following Lemma and Theorem are
similar to that of [12, Theorem 1.8]. See also Remark 3.5.
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Lemma 4.10. Let W = T ⋊W0 be an affine Coxeter group with translations T and finite
part W0. Let w ∈ W0 be an arbitrary element in the finite part of W . Then

ℓR(w) = dimΦ

(⋃
t∈T

Mov([t, w])

)
.

Proof. The set T of translations are linear combinations of roots by (4.1). Note that
utλu

−1 = tu(λ) and t−1
λ = t−λ for any u ∈ W and tλ ∈ T . Putting these together, we have

Mov([tλ, w]) = Mov(tλtw(−λ)) = {λ+ w(−λ)} by Proposition 4.4. Therefore,

dimΦ

 ⋃
tλ∈T

Mov([tλ, w])

 = dimΦ

 ⋃
tλ∈T

{λ+ w(−λ)}

 .

Letting w = r1 . . . rk be a reduced expression for w over R, then the αi ∈ Φ associated to
the ri are linearly independent by Lemma 4.5 such that Mov(w) = span({αi : i ∈ [k]}).
Moreover,

Mov(w) = {µ ∈ V : w(x) = x+ µ for some x ∈ E}
= {µ ∈ V : w(µx) = µx + µ for some µx ∈ V }
= span ({αi ∈ Φ : w(λ) = λ+ cαi for some tλ ∈ T, i ∈ [k], c ∈ R\ {0}}) .

The second equality comes from the fact that any point x is associated with a unique
vector λx where 0 + λx = x (where we have let w denote both the Euclidean isometry on
points and the isometry on vectors associated to it). The final equality comes from the fact
that any isometry in a Euclidean vector space is a linear isomorphism, in addition to the facts
that span (Φ) = V and Mov(w) = span({αi : i ∈ [k]}). Note that for an arbitrary reflection
tλ ∈ T such that µ = w(λ)−λ then w(−λ) +λ = −w(λ)− (−λ) = −(w(λ)−λ) = −µ. This
implies that:

dim(w) = dimΦ (Mov(w))

= dimΦ (span ({αi ∈ Φ : w(λ) = λ+ cαi for some tλ ∈ T, i ∈ [k], c ∈ R\ {0}}))

= dimΦ

 ⋃
tλ∈T

{λ+ w(−λ)}

 .

As w ∈ W0 is elliptic, then dim(w) = d(w) + e(w) = ℓR(w) by Proposition 4.7 and
Theorem 4.8. Therefore ℓR(w) = dimΦ

(⋃
t∈T Mov([t, w])

)
as desired.

Theorem 4.11. Let W = T ⋊W0 be an affine Coxeter group with translations T and finite
part W0. Let w ∈ W be an arbitrary element in W with translation elliptic factorisation
w = tu. Then the growth rate of the conjugacy class C (w) is equivalent to nℓR(u), where
ℓR(u) is the reflection length.

Proof. Let w ∈ W be an arbitrary element with translation elliptic factorisation w = tu
with t ∈ T and u ∈ W0. By Lemma 3.6, since T is a finite-index normal subgroup and since
W0 is the set of coset representatives, letting u ∈ W0 be our fixed representative, we have

C (w) =
⋃

v∈W0

[T, vuv−1]vwv−1.



Vol. 17:1 CONJUGACY CLASS GROWTH IN VIRTUALLY ABELIAN GROUPS 1:13

Then by Lemma 2.4 the conjugacy class growth rate of C (w) is equivalent to the maxi-
mal growth rate of the subsets [T, vuv−1]vwv−1 as v ranges across W0. Furthermore, by
Corollary 2.6, as vwv−1 ∈ W , the growth rate of each [T, vuv−1]vwv−1 is equivalent to the
growth rate of [T, vuv−1]. In other words, the growth rate of the conjugacy class C (w) is
equivalent to the maximal growth rate of the subsets [T, vuv−1] as v ranges across W0.

Since any conjugate of a reflection is again a reflection, the function ℓR is constant on
conjugacy classes and in particular ℓR(vuv

−1) = ℓR(u). Therefore it suffices to show that an

arbitrary subset [T, vuv−1] for v ∈ W0 has growth rate equivalent to nℓR(vuv−1) = nℓR(u).
Let u′ = vuv−1 for some v ∈ W0. By Lemma 3.4, [T, u′] = {[t, u′] : t ∈ T} as T is a

normal abelian subgroup of W . Furthermore, by normality of T , [T, u′] is contained in T
and is therefore abelian of finite rank. By Proposition 3.2, it has polynomial growth whose
degree is equal to its rank. Therefore it suffices to show rank ([T, u′]) = ℓR(u

′).
Since the move set of a translation t ∈ T is precisely the set {λ} for some λ ∈ V , then a

translation t is a product of translations t1 . . . tn if and only if λ = λ1 + · · ·+ λn. Therefore,
the rank of [T, u′] ⊆ T is equal to the dimension of the span of the move sets of the elements
of [T, u′]

rank([T, u′]) = dim(span(
⋃
t∈T

Mov([t, u′]))).

Since [T, u′] ⊆ T , the elements of [T, u′] are linear combinations of roots by (4.1). This
implies that span(

⋃
t∈T Mov([t, u′])) is a root space. In other words

rank
(
[T, u′]

)
= dimΦ

(⋃
t∈T

Mov
(
[t, u′]

))
.

By Lemma 4.10, since u′ ∈ W0, then dimΦ

(⋃
t∈T Mov ([t, u′])

)
= ℓR(u

′), as desired.
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