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Abstract. For a commutative finite Z-algebra, i.e., for a commutative ring R whose
additive group is finitely generated, it is known that the group of units of R is finitely
generated, as well. Our main results are algorithms to compute generators and the structure
of this group. This is achieved by reducing the task first to the case of reduced rings, then
to torsion-free reduced rings, and finally to an order in a reduced ring. The simplified
cases are treated via a calculation of exponent lattices and various algorithms to compute
the minimal primes, primitive idempotents, and other basic objects. All algorithms have
been implemented and are available as a SageMath package. Whenever possible, the time
complexity of the described methods is tracked carefully.

1. Introduction

In the study of the structure of a commutative ring, one important aspect is its group of
units. A famous result in this direction dating back to 1846 is L.G. Dirichlet’s unit theorem
(see [7]) which says that the group of units of the ring of integers of a number field is a
finitely generated abelian group. Much later, in 1972, this was generalized to orders in such
rings by H. Zassenhaus (see [30]). With the advance of computer algebra, the computation
of an actual system of generators of such a unit group and its set of relations have become
feasible, and algorithms achieving these tasks have been developed (see, for example, [6, 3]).
Also for other types of rings, for which the group of units is known to be finitely generated,
explicit algorithms for computing their generators or their presentations have been described,
including for orders in (not necessarily commutative) finite dimensional Q-algebras (see [4]),
for integral group rings over finite abelian groups (see [10]), and for the affine coordinate
rings of rational normal curves and elliptic curves (see [5]).

In this paper we improve on many of these results and consider the general case of a
commutative finite Z-algebra, i.e., a commutative ring which is a finitely generated Z-module.
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In [24], P. Samuel proved that the unit groups of such rings are finitely generated. The
main results of this paper are algorithms for computing a system of generators of these unit
groups, as well as for calculating their structure.

Let us describe the path we follow to reach these goals. After recalling some basic
results about finite Z-algebras in Section 2, we devise algorithms for computing exponent
lattices in such a ring R, i.e., lattices of the type Λ = {(a1, . . . , ak) ∈ Zk | fa1

1 · · · fak
k = 1}

where f1, . . . , fk ∈ R. Using several techniques from our previous paper [19], we reduce
the calculation of exponent lattices to the cases of 0-dimensional algebras over the fields Q
and Fp with a prime p. For this characteristic p part, we solve the problem first modulo p and
then refine the answer modulo higher powers of p with a method resembling the well-known
technique of Hensel lifting (see Proposition 3.6). Altogether, we obtain Algorithm 3.8 and
discuss several methods to improve its implementation (see Remark 3.9).

The next step is taken in Section 4 where we consider the case of a reduced finite
Z-algebra. If the algebra is even integral, algorithms for computing its unit group are known
(see Remark 4.1). The general case is treated by calculating the primitive idempotents
and computing the unit group of an order via reduction to the case of orders in number
fields (see Lemma 4.4 and Algorithm 4.5). This solves the torsion-free reduced case (see
Corollary 4.7) and allows us to deal with the general reduced case using a version of the
Chinese Remainder Theorem (see Lemma 4.9 and Algorithm 4.10).

Finally, in Section 5, we attack the general case of a finite Z-algebra. The main additional
task is to find generators of 1 + Rad(0) (see Lemma 5.1). We provide two different solutions
(Algorithm 5.3 and Lemma 5.4). All in all, we are able to compute a system of generators of
the unit group of a finite Z-algebra (see Algorithm 5.3) and also its structure in terms of its
rank and invariant factors (see Corollary 5.6).

Throughout the paper we tried to keep track of the complexity of the presented al-
gorithms. First of all, this depends on the way the algebra R is given: either explicitly
(via generators and relations of R+ plus the structure constants) or through a presentation
R = Z[x1, . . . , xn]/I with an ideal I given by explicit generators. In the first case, many
steps of the algorithms can be performed in probabilistic polynomial time plus (possibly)
one integer factorization. In the second case, we may have to first compute a strong Gröbner
basis to get going. After we reduce everything to the case of an order in a number field, we
have to rely on previous work whose precise complexity estimates are apparently not known.

All algorithms in this paper are illustrated by explicit examples. They were computed
using an implementation by the second author in the software system SageMath [27]. The
complete package is available freely from his GitHub page [28]. As for the basic definitions
and notation, we adhere to the terminology given in the books [17] and [18].

2. Preliminaries on Finite Z-Algebras

In this section we collect basic properties of finite Z-algebras, i.e., Z-algebras which are
finitely generated as a Z-module. Given such an algebra R, we denote its underlying Z-
module by R+. Subsequently, we assume that a Z-algebra R is either given by an ideal I in
P = Z[x1, . . . , xn] such that R = P/I or that it is given as follows.

Remark 2.1. A Z-algebra R is said to be explicitly given if it is given by the following
information.
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(a) A set of generators G = {g0, . . . , gn} of the Z-module R+, together with a matrix
A = (aℓk) ∈ Matm,n+1(Z) whose rows generate the syzygy module SyzZ(G) of G.

(b) Structure constants cijk ∈ Z such that gigj =
∑n

k=0 cijkgk for i, j = 0, . . . , n.

Notice that we may assume g0 = 1 and encode this information as an ideal

I =

〈
xixj −

n∑
k=0

cijkxk,
n∑

k=0

aℓkgk | i, j = 1, . . . , n, ℓ = 1, . . . ,m

〉
in P = Z[x1, . . . , xn] such that R ∼= P/I.

If R = P/I is not explicitly given, then we can obtain an explicit representation from a
strong Gröbner basis of I.

Definition 2.2. Given an ideal I ⊆ P and a term ordering σ, a set of polynomials
G = {g1, . . . , gr} in I is called a strong σ-Gröbner basis of I if, for every non-zero
polynomial f ∈ I, there exists an index i ∈ {1, . . . , r} such that LMσ(f) is a multiple
of LMσ(gi).

Strong Gröbner bases can be computed using a generalization of Buchberger’s algorithm
(see for example [1, Ch. 4] or [9]). For some ideal-theoretic operations which can be performed
effectively using strong Gröbner bases, we refer to [1, Ch. 4] and [17, Ch. 3]. Generators of
the Z-module R+ can be deduced from a strong Gröbner basis as follows.

Proposition 2.3. (Macaulay’s Basis Theorem for Finite Z-Algebras)
Let I ⊆ P be an ideal such that P/I is a finite Z-algebra, let σ be a term ordering on Tn,
and let L = {m ∈ LMσ(I) | LCσ(m) = 1} be the set of all monic leading monomials of I.
Then the residue classes of the terms in Oσ = Tn \ L form a generating set of the Z-module
P/I.

Proof. See Proposition 6.6 in [20].

Given generators of R+ as in the preceding lemma, it is also possible to determine
an explicit presentation of R (see Algorithm 6.7 and Corollary 6.8 in [20]). From such a
presentation we can then determine the structure of R+.

Remark 2.4. By the structure theorem for finitely generated modules over a principal ideal
domain there exist r and k1, . . . , ku in N such that ki divides kj for i < j and such that

R+ ∼= Zr ⊕ Z/k1Z⊕ · · · ⊕ Z/kuZ.
The numbers r and k1, . . . , ku are uniquely determined by R+. We call r the rank and
k1, . . . , ku the invariant factors of R+. The largest invariant factor ku is the exponent of
the torsion subgroup of R+. We call it the torsion exponent τ of R+.

The rank, the invariant factors, and the torsion exponent can be determined using a
Smith normal form computation (for details we refer to Section 2 in [20]). Algorithms which
compute the Smith normal form of an integer matrix can for example be found in [13] or [26].
If an explicit presentation is given or has been determined from a strong Gröbner basis,
many computations that we need in the following sections can be performed efficiently, i.e.,
in (probabilistic) polynomial time in the bit complexity of the input. More precisely, we
have the following complexity results.

Remark 2.5. Assume that R is an explicitly given finite Z-algebra.
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(a) The minimal prime ideals of R can be computed in zero-error probabilistic polynomial
time except for the factorization of one integer (see Algorithm 4.2 in [20]).

(b) The primitive idempotents of R can be obtained from its minimal prime ideals in
polynomial time using Algorithm 5.8 in [20].

(c) The intersection of ideals in R can be determined in polynomial time using Proposition 2.9
in [20].

3. Exponent Lattices in Finitely Generated Z-Algebras

Let R = P/I be a finitely generated Z-algebra. In the following we present an algorithm
which computes the multiplicative relations between units in R. We emphasize that in this
section we do not require that R is a finite Z-algebra.

Definition 3.1. Let R be a ring and let f1, . . . , fk ∈ R×. Then the lattice

Λ = {(a1, . . . , ak) ∈ Zk | fa1
1 · · · fak

k = 1}
is called the exponent lattice of (f1, . . . , fk) in R.

The goal of this section is to provide an algorithm which computes a basis of the
exponent lattice of the tuple (f1, . . . , fk) in a finitely generated Z-algebra. In the following
we refer to this task simply as computing an exponent lattice. Let us recall how this task is
solved in affine K-algebras, i.e., in finitely generated algebras over a field K.

Remark 3.2. (Computing Exponent Lattices in Affine K-Algebras)
The problem of computing the exponent lattices has been considered by many authors. For
units in a number field algorithms can be found in [11], in Section 7.3 of [14], in Section 3
of [15], or in [31]. Based on these algorithms, a method for computing the exponent lattice in
zero-dimensional Q-algebras is presented in [21]. Recently, we generalized these results and
presented a method (see Algorithm 5.3 in [19]) for computing exponent lattices in arbitrary
affine K-algebras where K is a field such that exponent lattices in finite extensions of K
can be effectively computed. Note, that this includes the cases K = Q and K = Fp.

Now the main idea is to reduce the problem of computing an exponent lattice in R to
computing exponent lattices in affine Q- and Fp-algebras.

Lemma 3.3. Let R be a ring, I an ideal in R, and f ∈ R. If m ∈ N is such that
I : f∞ = I : fm, then

I = (I : fm) ∩ ⟨I, fm⟩.

Proof. See [12], Lemma 3.3.6.

Together with the following proposition this lemma is the main tool for reducing the
exponent lattice computation to Q- and Fp-algebras.

Proposition 3.4. Let I be an ideal in P , let G = {g1, . . . , gs} be a minimal strong Gröbner
basis of I, and let N ∈ Z be the least common multiple of the leading coefficients of the
elements of G. Then the following holds.

(a) I = (I : ⟨N⟩) ∩ (I + ⟨N⟩)
(b) If I ∩ Z = ⟨0⟩, then IQ[x1, . . . , xn] ∩ P = I : ⟨N⟩.
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Proof. See [16], Proposition 4.3.

The following example given in Section 4 of [16] illustrates the fact that the least common
multiple N of the leading coefficients of a strong Gröbner basis as in the proposition is in
general not the smallest number satisfying I : ⟨N⟩ = I : ⟨N⟩∞.

Example 3.5. Consider the ideal I = ⟨x2, y2, z2, xz + yz, xy, 2x− y, 3z⟩ ⊆ Z[x, y, z]. The
generators form a strong Gröbner basis of I and the least common multiple of the leading
coefficients is 6. But we have I : ⟨3⟩ = I : ⟨6⟩ = I : ⟨6⟩∞.

Let {g1, . . . , gk} be a strong Gröbner basis of I and let N be the least common multiple
of the leading coefficients of the gi. Then we have I = I : ⟨N⟩ ∩ ⟨I,N⟩. The property
I : ⟨N⟩ = IQ[x1, . . . , xn] ∩ P then allows us to compute the exponent lattice modulo
I : ⟨N⟩. This can be done using Remark 3.2. The ideal ⟨I,N⟩ can be further split into
⟨I,N⟩ =

⋂r
i=1⟨I, p

ei
i ⟩ where N = pe11 · · · perr is the prime factorization of N . Let p ∈ N be a

prime number. The exponent lattice modulo an ideal of the form ⟨I, p⟩ can be computed
using the fact that the polynomial f c1

1 · · · f ck
k − 1 is in I if and only if its canonical residue

class is in IFp[x1, . . . , xn]. We can therefore again apply Remark 3.2. It remains to handle
ideals of the form ⟨I, pe⟩ with e > 1.

Proposition 3.6. Let I be an ideal such that I ∩ Z = {0}. Consider the finitely generated
Z-algebra R = P/I, and let f1, . . . , fk ∈ R×. Let p be a prime number, let e be a positive
integer, and let b1, . . . , bm ∈ Zk be a basis of the exponent lattice Λ of

(
f̄1, . . . , f̄k

)
in P/⟨I, pe⟩.

Then the following conditions are equivalent.

(a) The Z-linear combination c = a1b1 + · · · + ambm ∈ Λ with a1, . . . , am ∈ Z is in the
exponent lattice of

(
f̄1, . . . , f̄k

)
in P/⟨I, pe+1⟩.

(b) The tuple (a1, . . . , am) is a solution of the linear equation over Z in the indeterminates
y1, . . . , ym given by

h̄1y1 + · · ·+ h̄mym = 0 in P/⟨I, p⟩, (i)

where hi = (f bi1
1 · · · f bik

k − 1)/pe ∈ R and h̄i is its residue class modulo ⟨I, p⟩.

Proof. Since all tuples bi are in Λ we have f bi1
1 · · · f bik

k = 1 modulo ⟨I, pe⟩. Therefore there

exists gi ∈ P such that f bi1
1 · · · f bik

k = 1 + pegi in R for i = 1, . . . ,m. This shows hi = gi.

Now the tuple c is in the exponent lattice of
(
f̄1, . . . , f̄k

)
in P/⟨I, pe+1⟩ if and only if

f c = fa1b1 · · · fambm = (1 + peg1)
a1 · · · (1 + pegm)am = 1 + a1p

eg1 + · · ·+ ampegm = 1

in P/⟨I, pe+1⟩. This is equivalent to a1h̄1 + · · ·+ amh̄m = 0 in P/⟨I, p⟩, which is satisfied if
and only if (a1, . . . , am) is a solution of the linear equation (i).

At this point we are ready to compute the exponent lattice of (f1, . . . , fk) modulo
an ideal of the form ⟨I, pe⟩. This is achieved by first computing the exponent lattice of
(f1, . . . , fk) modulo IFp[x1, . . . , xn] and then iteratively applying Proposition 3.6 to obtain
the exponent lattice modulo ⟨I, pi⟩ for i = 2, . . . , e.

Example 3.7. Let I =
〈
x2 + x+ 1, y2 + y + 1, 8

〉
, and consider the finite Z-algebra R =

Z[x, y]/I. For f1 = 2x + 1, f2 = 4y + 1 and f3 = −2y − 1 let us compute the exponent
lattice of

(
f̄1, f̄2, f̄3

)
in R. To compute the exponent lattice modulo ⟨I, 2⟩ we form the zero-

dimensional F2-algebra F2[x, y]/IF2[x, y], and obtain the exponent lattice Λ1 = Z3. We then
solve the linear equation in the indeterminates z1, z2, z3 given by xz1 + 2yz2 − (y + 1)z3 = 0
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modulo ⟨I, 2⟩, and obtain the solution space M1 = ⟨(0, 1, 0), (2, 0, 0), (0, 0, 2)⟩. Since Λ1 = Z3,
this yields Λ2 = M1. Then we solve the linear equation in the indeterminates z1, z2, z3 given
by yz1 − z2 − z3 = 0 modulo ⟨I, 2⟩ and obtain the solution space M2 = ⟨b1, b2, b3⟩ with
b1 = (0, 1, 1), b2 = (0,−1, 1) and b3 = (2, 0, 0). Finally, we compute the exponent lattice

Λ3 = {c1b1 + c2b2 + c3b3 | c ∈ M2} = ⟨(0, 2, 0), (2, 0, 2), (−2, 0, 2)⟩.

Combining the previous results we now obtain the following algorithm.

Algorithm 3.8. (Computing Exponent Lattices in Finitely Generated Z-Algebras)
Let R = P/I be a Z-algebra, and let f1, . . . , fk ∈ R×. Consider the following sequence of
instructions.

1: Compute I ∩ Z = ⟨q⟩.
2: if q = 0 then
3: Using Remark 3.2, compute the exponent lattice Λ ⊆ Zk of (f1, . . . , fk) in theQ-algebra

Q⊗Z R.
4: Compute a strong Gröbner basis {g1, . . . , gℓ} of I.
5: Let N = lcm(LC(g1), . . . ,LC(gℓ)).
6: if N = 1 then
7: return Λ
8: else
9: Recursively apply the algorithm to compute the exponent lattice M ⊆ Zk of

(f1, . . . , fk) in P/(I + ⟨N⟩).
10: return Λ ∩M
11: end if
12: else
13: Compute the prime factorization q = pe11 · · · perr .
14: for i = 1, . . . , r do
15: Using Remark 3.2, compute the exponent lattice Mi ⊆ Zk of (f1, . . . , fk) in the

Fp-algebra Fp ⊗Z R.
16: for j = 1, . . . , ei − 1 do
17: Assume that Mi is generated by {b1, . . . , bm} ⊆ Zk.

18: For s = 1, . . . ,m form the elements hr = (f bs1
1 · · · f bsk

k − 1)/pji ∈ R.
19: Compute the solution space M ′ ⊆ Zm of the linear equation over Z in the

indeterminates y1, . . . , ym given by

h̄1y1 + · · ·+ h̄mym = 0 in P/⟨I, pi⟩.

20: Replace Mi by the lattice {c1b1 + · · ·+ cmbm | (c1, . . . , cm) ∈ M ′} ⊆ Zk.
21: end for
22: end for
23: return the lattice M1 ∩ · · · ∩Mr

24: end if

This is an algorithm which computes the exponent lattice of (f1, . . . , fk) in R.

Proof. A tuple a = (a1, . . . , ak) ∈ Zk is in the exponent lattice of (f1, . . . , fk) if and only
if fa1

1 · · · fak
k − 1 ∈ I. By Proposition 3.4 we have I = (I : ⟨N⟩) ∩ ⟨I,N⟩. In the case

I ∩ Z = ⟨0⟩, we have I : ⟨N⟩ = IQ[x1, . . . , xn] ∩ P by the same proposition. Line 3
therefore yields the exponent lattice of (f1, . . . , fk) in P/(I : ⟨N⟩). It remains to prove
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that lines 12–24 determine the exponent lattice of (f1, . . . , fk) in P/⟨I,N⟩. Since we have
⟨I,N⟩ =

⋂r
i=1⟨I, p

ei
i ⟩, it is enough to show that lines 15–21 compute the exponent lattice

of (f1, . . . , fk) in P/⟨I, peii ⟩. Line 15 yields the exponent lattice of (f1, . . . , fk) in P/⟨I, pi⟩.
It then follows from Proposition 3.6 that the j-th iteration of the for loop in lines 16–21

correctly computes the exponent lattice of (f1, . . . , fk) in P/⟨I, pj+1
i ⟩.

Let us collect some remarks about the implementation of this algorithm.

Remark 3.9. Suppose we are in the setting of Algorithm 3.8.

(a) A non-zero generator q of the ideal I∩Z in line 1 is given by the unique integer contained
in a reduced strong Gröbner basis of I. If R is a finite Z-algebra, then q is zero if and
only if the rank of R+ is non-zero. The rank of an explicitly given finite Z-algebra can
be determined in polynomial time using a Smith normal form computation.

(b) As illustrated in Example 3.5 there can be a proper divisor M of N satisfying I : ⟨M⟩ =
I : ⟨M⟩ ∩ ⟨I,M⟩. By determining the smallest number with this property, unnecessary
iterations in the else-branch of this algorithm can be avoided. If R is a finite Z-algebra,
then the smallest number with this property is given by the torsion exponent of R. It
can be determined in polynomial time using a Smith normal form computation if R is
explicitly given.

(c) If R is a finite Z-algebra, then the Q-algebra in line 3 and the Fp-algebra in line 15 are
zero-dimensional. Exponent lattices in an explicitly given zero-dimensional Q-algebra
can be computed in polynomial time (see Algorithm 8.3 in [21]). For zero-dimensional
Fp-algebras, the problem can be reduced to the discrete logarithm problem in finite
fields (see Algorithm 3.20 in [19]).

(d) In line 19 we need to compute the solution space of the linear equation over Z in the
indeterminates y1, . . . , ym given by

g1y1 + · · ·+ gmym = 0

in P/⟨I, pi⟩. This can be achieved by checking for all (a1, . . . , am) ∈ Zm with 0 ≤ aℓ ≤ pi
for ℓ = 1, . . . ,m whether a1g1 + · · ·+ amgm ∈ ⟨I, pi⟩. Alternatively, one can perform a
syzygy calculation using Gröbner basis techniques. In particular, for large pi, this might
be more efficient. If R is an explicitly given finite Z-algebra, we can use [20, Prop. 2.6]
to solve this linear equation efficiently.

The following example illustrates how Algorithm 3.8 can be applied to compute exponent
lattices in finite Z-algebras.

Example 3.10. Let I =
〈
x2 + x+ 1, y2 + y + 1, 6z2, z3

〉
, and consider the finite Z-algebra

R = Z[x, y, z]/I. Let f1 = −xyz − xz + 1, f2 = y + 1 and f3 = xy + x+ y + 1. We apply
Algorithm 3.8 to compute the exponent lattice of

(
f̄1, f̄2, f̄3

)
in R.

1: Since R is a finite Z-algebra, we compute its rank given by 8.
2: The rank of R is non-zero, which implies I ∩ Z = ⟨0⟩.
3: Using Remark 3.2, we compute the exponent lattice Λ = ⟨(0, 6, 0), (0, 0, 3)⟩ in the

zero-dimensional Q-algebra Q⊗Z R.
4,5: Since R is a finite Z-algebra, we compute its torsion exponent given by 6.
9: We recursively apply the Algorithm to compute the exponent lattice of

(
f̄1, f̄2, f̄3

)
in P/⟨I, 6⟩.

1: We have q = 6.
13: We determine the factorization 6 = 2 · 3.
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15: Using Remark 3.2, we compute generators (4, 0, 0), (0, 3, 0) and (0, 0, 3) of the exponent
lattice M1 of

(
f̄1, f̄2, f̄3

)
modulo IF2[x, y, z] and generators (3, 0, 0), (0, 6, 0), and (0, 0, 3)

of the exponent lattice M2 modulo IF3[x, y, z].
20: The exponent lattice of

(
f̄1, f̄2, f̄3

)
in R is given by Λ ∩M1 ∩M2 = ⟨(0, 6, 0), (0, 0, 3)⟩.

It is an open question to what extent Algorithm 3.8 can be generalized to the non-
commutative case. A straightforward generalization does not seem to be possible, since in
this case the multiplicative relations between units are in general not computable. This
follows from the fact that the subgroup membership problem is undecidable for 4×4 integral
matrices (see [23]). Also note that multiplicative relations in general do not form a lattice in
the non-commutative case.

4. The Unit Group of Reduced Finite Z-Algebras

Let us begin by considering the case of integral finite Z-algebras, i.e, algebras of the form
P/p where p is a prime ideal in P .

Remark 4.1. (Computing the Unit Group of Integral Finite Z-Algebras)
Let p be a prime ideal in P such that R = P/p is a finite Z-algebra.
(a) If p ∩ Z = ⟨0⟩, then K = Q⊗Z R is a number field. Since P/p is integral over Z and its

rank equals dimQ(K), the ring R is an order in K. Generators of the unit group of R
can therefore be computed using for example the algorithms given in [6] or [3]. These
algorithms require that the field K is given by a primitive element. Such an element
can be determined using one of the methods described in [29] or Algorithm 6.3 in [21].

(b) If p∩Z = ⟨p⟩ for a prime number p, then P/p is isomorphic to the finite field K = Fp⊗ZR.
The problem therefore reduces to computing a primitive root of K. Algorithms for this
task can be found in [25] or in [8].

Let us now consider the case of a reduced finite Z-algebra R = P/I. If I ∩ Z = ⟨n⟩
for some n ∈ Z \ {0}, then the minimal prime ideals of R are maximal ideals and therefore
pairwise coprime. By the Chinese Remainder Theorem computing the unit group then
reduces to the case discussed above. If I ∩Z = ⟨0⟩, then the minimal prime ideals of R need
not be pairwise coprime.

Example 4.2. Consider the ideal I = ⟨x2 + x+ 1, y2 + y + 1⟩. Its minimal prime ideals
are given by p1 = ⟨x − y, y2 + y + 1⟩ and p2 = ⟨x + y + 1, y2 + y + 1⟩ and we have
p1 + p2 = ⟨x+ 2, y + 2, 3⟩.

This example demonstrates that we cannot directly reduce to the integral case. Instead
we notice, that if R is torsion-free, then R is an order in the reduced zero-dimensional
Q-algebra Q⊗Z R.

Definition 4.3. Let A be a zero-dimensional reduced Q-algebra. A subring O of A is called
an order if there is a basis a1, . . . , am of A such that O = Za1 + · · ·+ Zam.

The unit group of an order in a zero-dimensional reduced Q-algebra, can be computed
using the algorithm presented in Section 3 of [10]. In the following we present a modified
version of this algorithm.
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Lemma 4.4. Let A be a reduced zero-dimensional Q-algebra and let e1, e2 be orthogonal
idempotents with e1 + e2 = 1. Let O be an order in A. Consider the ideal J = (e1O ∩O) +
(e2O ∩ O) and form the ring S = O/J . Consider the ring homomorphisms φi : eiO → S
given by φi(eia) = a+ J for a ∈ O. Then we have

O = {a1 + a2 | ai ∈ eiO and φ1(a1) = φ2(a2)}

Proof. See [10], Lemma 3.1.

Given an order O in a reduced zero-dimensional Q-algebra A and primitive idempotents
e1, . . . , ek of A, we can compute generators of (eiO)× since eiO is an order in the number
field eiA. We can then iteratively apply Lemma 4.4 to determine O×.

Algorithm 4.5. (Computing the Unit Group of an Order)
Let A be a reduced zero-dimensional Q-algebra, and let O be an order in A. Consider the
following sequence of instructions.

1: Compute the primitive idempotents e1, . . . , em of A.
2: Compute U = (e1O)×.
3: for j = 2, . . . ,m do
4: Set f = e1 + · · ·+ ej−1.
5: Compute generators of fO∩O and ejO∩O and form the ideal J = (fO∩O)+(ejO∩O)

in O.
6: Compute generators ejh1, . . . , ejhℓ of (ejO)×.
7: Assume that U = {fg1, . . . , fgk}.
8: Compute a set of generators B ⊆ Zk+ℓ of the exponent lattice Λ of the tuple(

g1, . . . , gk, h
−1
1 , . . . , h−1

ℓ

)
in O/J .

9: Set U =
{
fgb11 · · · gbkk + ejh

bk+1

1 · · ·hbk+ℓ

ℓ | b ∈ B
}
.

10: end for
11: return U .

This is an algorithm which computes a set of generators of O×.

Proof. It suffices to show that after the j-th iteration U generates the unit group of the
order (e1+ · · ·+ ej)O in (e1+ · · ·+ ej)A. Let r ∈ O and consider the group homomorphisms
φf : fO → O/J given by φf (fr) = r + J and φej : ejO → O/J given by φej (ejr) 7→ r + J .

Let g = fgc11 · · · gckk in U and h = ejh
ck+1

1 · · ·hck+ℓ

ℓ in (ejO)×. Then by Lemma 4.4 the
element g − h is in the unit group of (e1 + · · ·+ ej)O if and only if

φf (g) = gc11 · · · gckk + J = h
ck+1

1 · · ·hck+ℓ

ℓ + J = φej (ejh).

This is equivalent to (c1, . . . , ck+ℓ) ∈ Λ.

Let R = P/I be a finite Z-algebra. If R is torsion-free and reduced, then it is an order
in the zero-dimensional Q-algebra A = Q⊗Z R. Consequently, Algorithm 4.5 can be applied
to compute the unit group of the order R in A. In this case the steps of this algorithm can
be performed as follows.

Lemma 4.6. Let R = P/I be a reduced torsion-free finite Z-algebra, and let p1, . . . , pm be
the minimal prime ideals of I.

(a) The Q-algebra A = Q ⊗Z R is zero-dimensional and its maximal ideals are given by
mi = piQ[x1, . . . , xn] for i = 1, . . . ,m. We can therefore compute elements qi ∈

⋂
i ̸=j mj
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and pi ∈ mi such that qi + pi = 1. The residue classes q̄1, . . . , q̄m in A then form the
primitive idempotents of A

(b) The ideal q̄iR in A is isomorphic to q̄i(P/pi).
(c) We have q̄iR ∩R =

⋂
j ̸=i pi/I.

(d) For f =
∑

i ̸=j qi we have f̄R ∩R = pj/I.

Proof. Part (a) is a direct consequence of the Chinese Remainder Theorem (see Lemma 3.7.4
in [17]), and (b) follows from the fact that q̄iA is isomorphic to A/mi.

To proof (c), we notice that the ideal q̄iR ∩ R is contained in the right-hand side,
since qi ∈

⋂
i ̸=j mj . To show the opposite inclusion, let f ∈ P such that f̄ ∈

⋂
i ̸=j pj/I.

Then we have f = qif + pif . Since pi ∈ mi, this implies pif ∈
⋂

i=1,...,m pi = I. Hence,

f̄ = q̄if̄ ∈ q̄iR ∩R. Part (d) follows analogously.

Using these observations, we can adapt Algorithm 4.5 as follows.

Corollary 4.7. (Computing the Unit Group of a Reduced Torsion-Free Finite
Z-Algebra)
Let R = P/I be a reduced torsion-free finite Z-algebra. Consider the following sequence of
instructions.

1: Compute the minimal prime ideals p1, . . . , pm of I.
2: for i = 1, . . . ,m do
3: Compute elements qi ∈

⋂
i ̸=j pjQ[x1, . . . , xn] and pi ∈ piQ[x1, . . . , xn] such that qi +

pi = 1.
4: end for
5: Using Remark 4.1, compute a set of polynomials U such that their residue classes

generate (P/p1)
×.

6: for j = 2, . . . ,m do
7: Form the ideal J =

⋂
1≤i≤j−1 pi + pj.

8: Using Remark 4.1, compute polynomials h1, . . . , hℓ such that their residue classes
generate (P/pj)

×.

9: Assume that U = {g1, . . . , gk}, and compute a set of generators B ⊆ Zk+ℓ of the
exponent lattice of

(
ḡ1, . . . , ḡk, h̄

−1
1 , . . . , h̄−1

ℓ

)
in P/J .

10: Set U =
{
fgb11 · · · gbkk + qjh

bk+1

1 · · ·hbk+ℓ

ℓ | b ∈ B
}

where f = q1 + · · ·+ qj−1.

11: end for
12: return U .

This is an algorithm which computes a set of polynomials such that their residue classes
generate R×.

Proof. Since R is torsion-free and reduced, it is an order in the zero-dimensional Q-algebra
Q⊗ZR. Now we show that the steps of this algorithm correspond to the steps of Algorithm 4.5.

Assume that at the start of the j-th iteration of the for-loop in lines 6–11 the residue
classes of the elements in U generate the unit group of Rj−1 = P/(p1 ∩ · · · ∩ pj−1). Consider
the finite Z-algebra Rj = P/(p1 ∩ · · · ∩ pj). The residue classes of the elements f =
q1 + · · · + qj−1 and qj form orthogonal idempotents in Q ⊗Z Rj with f̄ + q̄j = 1. By
Lemma 4.6.b we then have q̄jRj

∼= q̄j(P/pj) and f̄Rj
∼= f̄Rj−1. Furthermore Lemma 4.6.c

yields q̄jRj ∩Rj = (p1 ∩ · · · ∩ pj−1)/I and f̄Rj ∩Rj = pj/I. This shows that the ideal J in
line 7 corresponds to the ideal J in line 5 of Algorithm 4.5.
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Let us apply this algorithm to a concrete example.

Example 4.8. Let I =
〈
x2 + x+ 1, y2 + y + 1, z2 + z + 1

〉
, and consider the finite Z-algebra

R = Z[x, y, z]/I. We follow the steps of Corollary 4.7 to compute generators of R×.

1: We compute the minimal prime ideals of I and obtain

p1 =
〈
y − z, x+ z + 1, z2 + z + 1

〉
p2 =

〈
y − z, x− z, z2 + z + 1

〉
p3 =

〈
y + z + 1, x+ z + 1, z2 + z + 1

〉
p4 =

〈
y + z + 1, x− z, z2 + z + 1

〉
2–4: We compute the primitive idempotents

e1 = 1/3x̄ȳ + 1/3x̄z̄ − 1/3ȳz̄ + 1/3x̄+ 1/3

e2 = −1/3x̄ȳ − 1/3x̄z̄ − 1/3ȳz̄ − 1/3x̄− 1/3ȳ − 1/3z̄

e3 = −1/3x̄ȳ + 1/3x̄z̄ + 1/3ȳz̄ + 1/3z̄ + 1/3

e4 = 1/3x̄ȳ − 1/3x̄z̄ + 1/3ȳz̄ + 1/3ȳ + 1/3

of the zero-dimensional Q-algebra Q⊗Z R.
5: Using Remark 4.1, we determine a set of generators U = {z̄ + 1} of (R/p1)

×.
7: Form the ideal J = p1 + p2 = ⟨x+ 1, y + 2, z + 2, 3⟩.
8: Using Remark 4.1, we compute (R/p2)

× = ⟨z̄ + 1⟩.
9: Using Remark 3.2, we compute generators (1, 1) and (0, 2) of the exponent lattice of

(z̄ + 1, (z̄ + 1)−1) in the finite field R/J .
10: Compute e1(z̄ + 1) + e2(z̄ + 1) = z̄ + 1 and e1 + e2(ȳ + 1)2 = −ȳz̄ − ȳ and set

U = {z̄ + 1,−ȳz̄ − ȳ}.
7: Form the ideal J = (p1 ∩ p2) + p3 = ⟨x+ 2, y + 2, z + 2, 3⟩.
8: Using Remark 4.1, we compute (R/p2)

× = ⟨z̄ + 1⟩.
9: Using Remark 3.2, we compute generators (1, 0, 1), (0, 1, 0) and (0, 0, 2) of the exponent

lattice of (z̄ + 1,−ȳz̄ − ȳ, (z̄ + 1)−1) in R/J .
10: Set U = {z̄ + 1,−ȳz̄ − ȳ, x̄z̄ + x̄+ z̄ + 1}.
7: Form the ideal J = (p1 ∩ p2 ∩ p3) + p4 = ⟨z2 + z + 1, x+ 2z, y + z + 1, 3⟩.
8: Using Remark 4.1, we compute (R/p2)

× = ⟨z̄ + 1⟩.
9: Using Remark 3.2, we compute generators (1, 0, 0, 1), (0, 1, 0, 2), (0, 0, 1, 2) and (0, 0, 0, 6)

of the exponent lattice in R/J of(
z̄ + 1,−ȳz̄ − ȳ, x̄z̄ + x̄+ z̄ + 1, (z̄ + 1)−1

)
.

10: Set U = {z̄ + 1,−ȳz̄ − ȳ, x̄z̄ + x̄+ z̄ + 1, 1}.
12: The algorithm returns the generators z̄ + 1,−ȳz̄ − ȳ, x̄z̄ + x̄+ z̄ + 1 of R×.

A reduced finite Z-algebra need not be torsion-free, but we can decompose it into a
direct product of finitely many finite fields and a torsion-free algebra.

Lemma 4.9. Let R be a reduced finite Z-algebra. Let p1, . . . , pr be the minimal prime ideals
of R of height n, let m1, . . . ,ms be the maximal ideals of R, and let J = p1 ∩ · · · ∩ pr. Then
R/J is torsion-free and we have R ∼= R/J ×R/m1 × · · · ×R/ms.

Proof. As a reduced ring, R does not have embedded prime ideals. Therefore J is not
contained in any mi. Since m1, . . . ,ms are maximal ideals the isomorphism follows directly
by the Chinese Remainder Theorem. To prove that R/J is torsion-free, we note that the
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prime ideals pi satisfy piQ[x1, . . . , xn]∩P . Now let f ∈ P and assume there exists k ∈ Z\{0}
with kf ∈ J . Then we have kf ∈ pi and by the above observation f ∈ pi for all i = 1, . . . , k.
This shows f ∈ J .

Thus we can now combine our results and obtain the following algorithm.

Algorithm 4.10. (Computing the Unit Group of a Reduced Finite Z-Algebra)
Let R = P/I be a reduced finite Z-algebra. Consider the following sequence of instructions.

1: Let G = [ ].
2: Compute the prime decomposition I = p1 ∩ · · · ∩ pr ∩m1 ∩ · · · ∩ms where p1, . . . , pr are

prime ideals of height n and m1, . . . ,ms are maximal ideals.
3: Compute J = p1 ∩ · · · ∩ pr.
4: Apply Algorithm 4.5 to compute a set of polynomials H such that their residue classes

generate the unit group of the order P/J in Q[x1, . . . , xn]/JQ[x1, . . . , xn].
5: Using the Chinese Remainder Theorem, compute e1, . . . , es+1 ∈ P such that their residue

classes form orthogonal idempotents of R with R ∼= ē1R× · · · × ēs+1R and ēiR ∼= P/mi

for i = 1, . . . , s and ēs+1R ∼= P/J .
6: for all h ∈ H do
7: Add ēs+1h̄+

∑s
i=1 ēi to G.

8: end for
9: for i = 1, . . . , s do

10: Using Remark 4.1, compute gi ∈ P such that ḡi generates (P/mi)
×.

11: Add ēiḡi +
∑

j ̸=i ēj to G.
12: end for
13: return G.

This is an algorithm which computes a generating set of the unit group R×.

Proof. By Lemma 4.9, we have R× ∼= (P/J)× × (P/m1)
× × · · · × (P/ms)

×, and P/J is
torsion-free. This shows that the units in R are given by the residue classes of elements of
the form e1f1 + · · ·+ esfs + es+1g where f̄i is a unit in (P/mi) and h̄ is a unit in (P/J). We
therefore conclude that the elements computed in line 7 and in line 11 generate R×.

As noted in Remark 2.5, the computations in lines 2,3 and 5 can be performed efficiently
if R is explicitly given.

Example 4.11. Consider the reduced finite Z-algebra R = Z[x, y, z]/I where

I =
〈
3x, xz − x, y2 + z, x2 + xy, z3 − 1

〉
.

Let us apply Algorithm 4.10 to compute generators of R×.

1: Set G = [ ].
2: We compute the minimal prime ideals of I and obtain p1 = ⟨z − 1, x, y2 + 1⟩, p2 =

⟨x, z2 + z + 1, y2 + z⟩ and m = ⟨3, z − 1, x+ y, y2 + 1⟩.
3: Compute J = p1 ∩ p2.
4: Using Algorithm 4.5, we obtain the following generators of (P/J)×.

h1 = 9ȳz̄2 − 17ȳz̄ − 15z̄2 + 9ȳ + 15z̄

h2 = 15ȳz̄ + 9z̄2 − 15ȳ − 17z̄ + 9

h3 = −56ȳz̄ − 32z̄2 + 56ȳ + 65z̄ − 32
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5: Determine orthogonal idempotents e1 = x̄ȳ + ȳ2 + z̄ and e2 = −x̄ȳ + 1 of R such that
e1 + e2 = 1, e1R ∼= P/m and e2R ∼= P/J .

7: Add e1 + e2h1, e1 + e2h2 and e1 + e2h3 to G.
10: Using Remark 4.1, we compute a generator g = ȳ + 1 of (P/m)×.
11: Add e1g + e2 to G.
13: The generators of R× are given by

e1 + e2h1 = 9ȳz̄2 + x̄ȳ − 17ȳz̄ − 15z̄2 + x̄+ 9ȳ + 15z̄

e1 + e2h2 = 15ȳz̄ + 9z̄2 − 15ȳ − 17z̄ + 9

e1 + e2h3 = −56ȳz̄ − 32z̄2 + 56ȳ + 65z̄ − 32

e1g + e2 = −x̄+ 1.

5. The Unit Group of Non-Reduced Finite Z-Algebras

Using the results of the previous subsection, in particular Algorithm 4.10, we can now
compute generators of the unit group of R/Rad(0). The next task is to lift these generators
to a generating set of R×.

Lemma 5.1. Let R be a finite Z-algebra.
(a) The canonical homomorphism φ : R → R/Rad(0) induces a surjective group homomor-

phism φ× : R× → (R/Rad(0))×.
(b) The kernel of φ× is given by 1 + Rad(0).

Proof. See [22], Lemma 1.1.5.

This lemma shows R×/(1+Rad(0)) ∼= (R/Rad(0))×. Therefore, if we have generators of
(R/Rad(0))× and generators of 1 + Rad(0), we obtain generators of R× using the following
well-known result.

Remark 5.2. Let M be a Z-module and N ⊆ M a submodule. Assume that the residue
classes of m1, . . . ,mk ∈ M generate M/N , and let N be generated by n1, . . . , nℓ. Then
m1, . . . ,mk, n1, . . . , nℓ generate M .

Since we already saw how to determine generators of R/Rad(0)×, it remains to compute
generators of 1 + Rad(0). If Rad(0)2 = 0, then elements 1 + f, 1 + g of 1 + Rad(0) satisfy
(1+f)(1+g) ≡ 1+f+g. In this case generators of the additive group of Rad(0), immediately
yield generators of 1 + Rad(0). If the nilpotency index of Rad(0) is greater than 2, we can
inductively compute generators of 1 + Rad(0)i−1 in R/Rad(0)i.

Algorithm 5.3. (Computing Generators of the Unit Group)
Let R = P/I be a finite Z-algebra. Consider the following sequence of instructions.

1: Let G = [ ].
2: Compute the nilradical Rad(0) of R.
3: Apply Algorithm 4.10 to compute elements in R such that their residue classes generate

the unit group of R/Rad(0). Add these elements to G.
4: Compute the nilpotency index s of Rad(0) in R.
5: for i = 2, . . . , s do
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6: Compute f1, . . . , fℓ ∈ R such that the residue classes f̄1, . . . , f̄ℓ in R/Rad(0)i gener-
ate 1 + Rad(0)i−1.

7: Add f1, . . . , fℓ to G.
8: end for
9: return G.

This is an algorithm which computes a generating set of the unit group R×.

Proof. After line 3 has been executed the list G contains generators of the unit group
of R/Rad(0). Now assume that the elements in G generate R/Rad(0)i−1 after iteration
number i− 1 of lines 5–8. By Lemma 5.1 the group homomorphism

φ×
i :

(
R/Rad(0)i−1

)× →
(
R/Rad(0)i

)×
is surjective and its kernel is given by 1 + Rad(0)i−1. This implies(

R/Rad(0)i−1
)×

/
(
1 + Rad(0)i−1

) ∼= (
R/Rad(0)i

)×
.

The generators of R/Rad(0)i−1 together with the generators of 1 + Rad(0)i−1 therefore

generate
(
R/Rad(0)i

)×
. Hence, after iteration number s the list G contains generators of

(R/Rad(0)s)× = R×.

The loop in lines 5–8 can be avoided as follows.

Lemma 5.4. Let R = P/I be a finite Z-algebra, and let G = Tn \ L be a set of terms as in
Lemma 2.3 such that the residue classes of the elements in G generate R+. Let f1, . . . , fk ∈ P
such that their residue classes generate Rad(0). Then H =

{
1 + t̄f̄i | i = 1, . . . , k, t ∈ G

}
generates 1 + Rad(0).

Proof. Clearly, H is contained in 1 + Rad(0). By the proof of Algorithm 5.3, it is then
enough to show that there are g1, . . . , gs ∈ H such that ḡ1, . . . , ḡs in R/Rad(0)i generate
1 + Rad(0)i−1. Every element in Rad(0)i−2 can be written as a Z-linear combination of the
residue classes of the terms in G. Thus, every element in Rad(0)i−1 can be written as a
Z-linear combination of the terms in

{
t̄f̄i | i = 1, . . . , k, t ∈ G

}
. The claim now follows from

the fact that (1 + f̄)(1 + ḡ) = 1 + f̄ + ḡ for f, g ∈ Rad(0)i−1, since fg ∈ Rad(0)i.

Let us apply Algorithm 5.3 using this simplification to a concrete example.

Example 5.5. Consider the finite Z-algebra R = Z[x, y]/I, where I =
〈
x3, 6x2, y2 + y + 1

〉
.

1: Let G = [ ].
2: Compute Rad(0) =

〈
x̄, ȳ2 + ȳ + 1

〉
.

3: Using Algorithm 4.10, we compute (R/Rad(0))× = ⟨ȳ + 1⟩ and add ȳ + 1 to G.
4-8: Using Lemma 2.3, we determine Z-module generators G =

{
x̄2ȳ, x̄ȳ, ȳ, x̄2, x̄, 1

}
of R.

Then for every generator g of Rad(0) and for every term t ∈ G we calculate 1+NFσ,I(tg)
and obtain generators 1 + x̄, 1 + x̄2, 1 + x̄ȳ, 1 + x̄2ȳ of 1 + Rad(0).

9: We obtain
R× =

〈
1 + ȳ, 1 + x̄, 1 + x̄2, 1 + x̄ȳ, 1 + x̄2ȳ

〉
.

The generating set produced by Algorithm 5.3 is in general not minimal. But we can
compute the exponent lattice of these generators to identify redundant ones. Furthermore,
the isomorphism type of the unit group can be determined by computing the Smith normal
form of the exponent lattice.
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Corollary 5.6. (Computing the Isomorphism Type of the Unit Group)
Let R = P/I be a finite Z-algebra. Consider the following sequence of instructions.

1: Using Algorithm 5.3, compute generators g1, . . . , gk of R×.
2: Using Algorithm 3.8, compute generators v1, . . . , vm ∈ Zk which generate the exponent

lattice of (g1, . . . , gk) in R.
3: Form the matrix whose rows are given by v1, . . . , vm, and compute its Smith normal

form S.
4: Let r be the number of diagonal entries of S equal to zero, and let k1, . . . , ku be the

non-zero diagonal entries of S.
5: return r and k1, . . . , ku.

This is an algorithm which computes the rank and the invariant factors of the group R×.

Algorithm 5.3 for computing generators of the unit group of a finite Z-algebra raises
the natural question whether it can be extended to finitely generated Z-algebras which are
not necessarily finite Z-modules. The unit group of such rings is finitely generated if and
only if the Jacobson radical is finitely generated as an additive group (see [2, Thm. 1]). In
particular, the unit group of a finitely generated, reduced Z-algebra is a finitely generated
group. However, the previous results cannot be directly applied to compute a set of generators.
For example, in the integral case, the algebra no longer needs to be a finite field or an order
in a number field. To the best of our knowledge, there exist no algorithms which compute
generators of the unit group in this case. We leave this problem for future research.
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