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Abstract. In this paper, we prove a criterion for a predicate structure to be equationally
Noetherian.

1. Introduction

Algebraic geometry over algebraic structures is a branch of mathematics that lies at the
intersection of algebra and model theory. The main objects of study in this theory are
algebraic sets, i.e., sets of solutions to systems of equations. Researchers also try to find
patterns that are common to classes of algebraic structures and to generalize results that are
true for specific algebraic structures to arbitrary algebraic structures. This theory arose in
papers by Plotkin [22, 23] for varieties of algebras and in a series of papers by Daniyarova,
Miasnikov and Remeslennikov started in [5, 7, 6] and subsequently published as a book [4].
This theory was preceded by work on algebraic geometry over groups [1, 18].

In classical algebraic geometry over associative rings and in universal algebraic geometry
over arbitrary algebraic structures, one of the very important roles plays the property of being
equationally Noetherian. Recall that an algebraic structure is called equationally Noetherian
if for every finite set of variables X, every system of equations S(X) is equivalent to a
finite subsystem S0(X) ⊆ S(X). The importance of this property is related to the so-called
unification theorems [5], which, for equationally Noetherian algebras, reduce problems of
classifying algebraic sets to logical problems of describing some quasivarieties and universal
classes. Also, in algebraic structures with this property, we can study only finite systems of
equations. Additionally, algebraic sets can be decomposed into finite unions of irreducible
sets. Another advantage is that such structures are good for calculating the dimension of
algebraic sets [4, Chapter 6].
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There are many examples of algebraic structures with and without this property. For
example, all finite algebraic structures, abelian groups, linear groups over a Noetherian
ring, and torsion-free hyperbolic groups are equationally Noetherian. On the other hand,
some infinitely generated nilpotent groups, wreath products of a non-abelian group and an
infinite cyclic group, infinite direct products of non-abelian groups, and minimax algebraic
structures are not equationally Noetherian [2, 1, 24, 12, 11].

There are also several works devoted to the property of being equationally Noetherian
and its generalizations [17, 14, 16, 25].

In recent years, researchers in universal algebraic geometry have focused on algebraic
structures with predicates. The theoretical foundations of this direction have been developed
in the paper [8]. Iljev and Remeslennikov [13] and Buchinskiy and Treier [3] have studied
systems of equations over graphs. Shevlyakov has studied algebraic geometry over groups in
a predicate language [27], equations over direct powers of algebraic structures in relational
languages [28], and algebraic geometry over algebraic structures with the relation ̸= [26].
Dvorzhetskiy [10] has considered lattices with a finite collection of predicate symbols.
Partially ordered sets have been considered in papers by Nikitin and Shevlyakov [20, 21]
and by Nikitin and Kudyk [19].

An algebraic structure in a language without functional symbols is called a predicate
structure. Let a language L consist of a finite number of predicates and a finite number
of constants, and let X be a finite set of variables. Then, there is only a finite number
of nonequivalent systems of equations in the variables X in the language L. It is easy to
see that all such L-structures are equationally Noetherian. Therefore, it is natural to ask
whether such an L-structure is equationally Noetherian or not in a language L′ extended by
an infinite number of constants. Let L be a language, and A = ⟨A,L⟩ be an L-structure.
Denote by LA the language obtained from L by adding a new constant symbol ca for every
element a ∈ A. All these constant symbols will be interpreted by the corresponding constants.
Algebraic geometry in the language LA is called Diophantine. This case will be considered
in this work. Also, by default, we will assume that every language includes the equality
predicate =.

Previously, in [3], all equationally Noetherian graphs were described in terms of forbidden
subgraphs. In this paper, developing and generalizing ideas from [3], we give a description
of predicate algebraic structures with a finite number of predicates that are not equationally
Noetherian (see Theorem 3.14).

In the paper [15], a criterion for an arbitrary algebraic structure without predicates not
to be equationally Noetherian was given. Note that that work was inspired by [2]. It turns
out that the criterion is also true for algebraic structures with predicates. The proof of the
generalized criterion is very similar to the proof of the original criterion and can be found
in [3].

Lemma 1.1. An algebraic structure A = ⟨A,L⟩ is not equationally Noetherian if and only
if there is a sequence of elements (ai)i∈N, ai ∈ An, and a sequence of L-equations (si(X))i∈N,
X = {x1, . . . , xn}, such that

A ̸|= si(ai) for all i ∈ N, and A |= sj(ai) for all j < i. (1.1)

Lemma 1.1 gives us a universal description of algebraic structures that are not equation-
ally Noetherian in terms of the satisfiability of atomic formulas in the language L. The goal
of this work is to translate the condition of not being equationally Noetherian for predicate
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Figure 1: An illustration to Lemma 1.1

structures from the language of the satisfiability of atomic formulas to the language of
forbidden substructures.

2. Preliminaries

Let us recall some basic concepts of algebraic geometry over algebraic structures that we
will need later. We will follow the book [4].

A language L = {P (n1)
1 , . . . , P

(nk)
k }, where each P

(ni)
i is an ni-ary predicate symbol, is

called a predicate language. If L and L′ are two languages, and L ⊆ L′, then L is called a
reduction of L′, and L′ is called an expansion of L.

Let A = ⟨A,L⟩ be an arbitrary algebraic structure in the language L. The extended
language LA = L ∪ {ca | a ∈ A} obtained from L by adding a new constant for every a ∈ A
is called a language with constants from A. In this paper, by default, we will consider only
such languages. Therefore, unless otherwise stated, A = ⟨A,P (n)⟩ will stand for an algebraic
structure A with the underlying set A in the language with the n-ary predicate symbol P
and the constants from A.

For a language LA, every equation has one of the following forms:

(1) Pi(w1, . . . , wni), where i ∈ {1, . . . , k}, and, for all j = 1, . . . , ni, the term wj is either a
constant of the language LA or a variable;

(2) w1 = w2, where each term wi, i = 1, 2, is either a constant of the language LA or a
variable.

Consider a structure A = ⟨A,L⟩. A point a ∈ An is called a solution to an equation
s(X) in LA in n variables X = {x1, . . . , xn} over the structure A if A |= s(a). A point
a ∈ An is called a solution to a system of equations S(X) over the algebraic structure A if a
is a solution to every equation of the system S(X). The set of all solutions to the system of
equations S(X) is called an algebraic set over A and is denoted by VA(S(X)). Two systems
of equations S1(X) and S2(X) in language L are called equivalent over A if their solutions
coincide.

An algebraic structure A is called equationally Noetherian if, for every positive integer
n, every system of equations S(X) in n variables X is equivalent to a finite subsystem
S0(X) ⊆ S(X).
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Equations with no variables are either always true or always false. Systems of such
equations can be replaced by one false or true equation. Therefore, we will not consider
systems of equations containing an infinite number of equations with no variables.

In the next sections, we will need the following corollary from Lemma 1.1.

Corollary 2.1 ([3]). Let A be an algebraic structure, X = {x1, . . . , xn} be a finite set of
variables, and S(X) be a system of equations that is not equivalent over A to any of its finite
subsystems. Then:

(1) There is an infinite subsystem S′ = {s1(X), . . . , si(X), . . .} and a sequence of elements
(ai)i∈N, ai ∈ An such that (1.1) holds. This system is also not equivalent over A to any
of its finite subsystems.

(2) Also, for every infinite subsystem S′′ ⊂ S′ and the corresponding subsequence (a′j)j∈N of

(ai)i∈N, the condition (1.1) also holds. Therefore, S′′ is also not equivalent to any of its
finite subsystems.

3. Equationally Noetherian predicate algebraic structures

In this section, we formulate and prove a criterion for predicate algebraic structures to be
equationally Noetherian.

3.1. Configurations of predicate equations. The following proposition holds for predi-
cate algebraic structures with a finite number of predicates.

Proposition 3.1. Let L be a predicate language with a finite number of predicate symbols.

Denote these predicates by P
(n1)
1 , . . . , P

(nm)
m , and denote the set of constant symbols by C.

Let X be a finite set of variables, and S(X) be an infinite system of equations in L. Let
S(X) not contain infinite subsystems of equations with no variables. Then at least one of
the following conditions is satisfied:

• there is a predicate symbol Pni
i ∈ L and there is an infinite subsystem of equations SPi ⊆ S

consisting of equations of the form Pi(w1, . . . , wni), where wj ∈ X ∪ C;
• there is an infinite subsystem of equations S= ⊆ S consisting of equations of the form
w1 = w2, where either w1 ∈ X and w2 ∈ C or w1 ∈ C and w2 ∈ C.

Proof. Let S = SC ∪ SX ∪ SX,C , where the subsystem SX,C consists of equations that
have variables and constants at the same time, SX consists of equations with no constants,
and SC consists of equations with no variables. Because the number of variables is finite,
the subsystem SX is finite. The fact that SC is finite follows from the assumption of the
proposition. Therefore, the subsystem SX,C is infinite. Let SX,C = SP1 ∪SP2 ∪ . . .∪SPm ∪S=,
where SPi consists of equations of the form Pi(w1, . . . , wni), and S= consists of w1 = w2.
Since SX,C is infinite, at least one of the subsystems SP1 , SP2 , . . . , SPm , S= is infinite.

Remark 3.2. Let a predicate language L consist of constants and one unary predicate.
Then, every L-structure is equationally Noetherian.

Let L be a predicate language. Let Q
(n)
1 and Q

(k)
2 be predicate symbols of L, C be the set

of constant symbols of L, and X be a finite set of variables. We will say that two equations
Q1(v1, . . . , vn) and Q2(w1, . . . , wk), where vi, wj ∈ X ∪C, have the same configuration if the
following conditions hold:
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(1) the predicate symbols Q
(n)
1 and Q

(k)
2 coincide, and, therefore, n = k;

(2) for all i = 1, . . . , n, either vi and wi are constants, or vi and wi are the same variable.

Remark 3.3. For a predicate symbol Q and a finite set of variables X, there are only a
finite number of pairwise different configurations of equations of the form Q(v1, . . . , vn) in
the variables X.

The following lemma allows us to consider only predicate equations that have the same
configuration.

Lemma 3.4. Let A = ⟨A,LA⟩ be a predicate structure with constants from A and a
finite number of predicates, and let A not be equationally Noetherian. Then, there are
infinite sequences of elements {(ai1, . . . , aip)}i∈N and equations S = {si(X)}i∈N of the same
configuration in a finite set of variables X such that (1.1) holds.

Proof. Since A is not equationally Noetherian, it follows from Corollary 2.1 that there
are sequences of elements (ai)i∈N and of equations S(X) such that (1.1) holds. From
Proposition 3.1, there is an infinite subsystem S′ ⊆ S such that all its equations contain
one predicate P (n) of LA, i.e., S

′ = {P (wi
1, . . . , w

i
n)}i∈N, where wi

j ∈ X ∪A. According to

Remark 3.3, there is an infinite subsystem S′′ ⊆ S′ such that it is not equivalent to any of
its finite subsystems and consists of predicate equations of the same configuration.

It follows from Lemma 3.4 that, without loss of generality, we can assume that all
equations of the form P (v1, . . . , vn), where P (n) is a predicate symbol of LA, have the form
P (x1, . . . , xp, b1, . . . , bt), where p+ t = n, x1, . . . , xp are variables, and b1, . . . , bt are constant
symbols of the language LA.

3.2. Projections of predicates and gluings of predicates. In this subsection, we give
two ways to construct a new predicate from an existing predicate.

Definition 3.5. Let P (n) be an arbitrary n-ary predicate, I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . n},
0 < k < n, and J = {1, 2, . . . n} \ I = {l1, l2, . . . , ln−k}. A predicate P ′(k) is called the
projection of the predicate P onto the set of components I by using elements p1, p2, . . . , pn−k ∈
A if, for all a1, a2, . . . , ak ∈ A,

A |= P ′(a1, . . . , ak) ⇐⇒ A |= P (c1, . . . , cn),

where cij = aj if ij ∈ I, for all j = 1, 2, . . . , k, and clj = pj if lj ∈ J for all j = 1, 2, . . . , n− k.

In other words, a projection of a predicate P is fixing some arguments of the predicate
P by given constants from the underlying set of the algebraic structure.

We use the name “a projection of a predicate” because it is ideologically similar to the
notion of a projection of a relation from database theory [9].

Example 3.6. Let Γ = ⟨{v1, v2, v3, v4, v5}, E(3)⟩ be a hypergraph with 5 nodes, where
3-hyperedges are triples (v1, v1, v2), (v1, v3, v3), (v2, v4, v1), (v3, v2, v2), (v5, v4, v5). Then, for
example, the projection of the predicate E onto the set of components I = {1, 3} by the
element v4 is the binary predicate that is true only for pairs (v2, v1), (v5, v5).

Definition 3.7. Let P (n) be an n-ary predicate, and I =
⊔m

j=1 Ij be an exact partition of

the set {1, . . . , n}. A predicate P/I(m), m ≤ n, is called the gluing of the predicate P by the
partition I if the following condition holds:

A |= P/I(a1, . . . , am) ⇐⇒ A |= P (b1, . . . , bn),
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Figure 2: The base non-Noetherian graph

where bi = ak if and only if i ∈ Ik.

Example 3.8. Consider the hypergraph Γ from Example 3.6. Let I = {{1}, {2, 3}} be an
exact partition of the set {1, 2, 3}. Then E/I is the binary predicate that is true only for
pairs (v1, v3), (v3, v2).

3.3. Perfectly non-Noetherian structures. The notion of a perfectly non-Noetherian
substructure plays a key role in our criterion for structures to be equationally Noetherian.
In fact, this object is a forbidden substructure for the equationally Noetherian property.

Definition 3.9. Let P be an n-ary predicate symbol of a language LA. We say that an
algebraic structure A = ⟨A,LA⟩ contains a P -perfectly non-Noetherian substructure if there
are sequences of elements {(ai1, . . . , aip)}i∈N and equations {P (x1, . . . , xp, b

i
1, . . . , b

i
t)}i∈N such

that

(1) p+ t = n;
(2) a11, . . . , a

1
p, b

1
1, . . . b

1
t , . . . , a

k
1, . . . , a

k
p, b

k
1, . . . , b

k
t , . . . are pairwise different;

(3) A ̸|= P (ai1, . . . , a
i
p, b

i
1, . . . , b

i
t) for all i;

(4) A |= P (ai1, . . . , a
i
p, b

j
1, . . . , b

j
t ) for all j < i.

To be short, we will sometimes say “a completely non-Noetherian substructure” instead of
“a P -completely non-Noetherian substructure” if LA has only one predicate symbol P .

Example 3.10. A base non-Noetherian graph mentioned in the paper [3] contains a perfectly
non-Noetherian substructure. Also, note that the property of containing a perfectly non-
Noetherian substructure for graphs coincides with the notion to be a perfectly non-Noetherian
graph from [3].

Let us highlight the following special sort of non-Noetherian structures that arise for
irreflexive binary predicates.

Definition 3.11. We say that a predicate algebraic structure A = ⟨A,P (2)⟩ contains a
non-Noetherian clique if there is a sequence of elements {ai}i∈N ⊆ A such that A ̸|= P (ai, ai)
for all i and A |= P (ai, aj) for all j < i.
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This notion is similar to the notion of a perfectly non-Noetherian substructure introduced
above. The difference is that the sequences of elements {ai}i∈N and {bi}i∈N from Definition 3.9
coincide.

Remark 3.12. If an algebraic structure A = ⟨A,P (2)⟩ has a non-Noetherian clique, then
it is not equationally Noetherian in the language with constants. Indeed, the sequences of
elements {ai}i∈N and equations {P (x, ai)}i∈N satisfy the condition (1.1) from Lemma 1.1.

An example of a non-Noetherian clique is a countable clique for simple graphs. It is
easy to see that, for simple graphs, every infinite clique is a non-Noetherian graph.

3.4. Criterion for a predicate structure to be equationally Noetherian. Let D =
{(di1, . . . , din)}i∈N be an arbitrary sequence of tuples of length n of elements of some infinite
set A. Denote by Cj(D) the set of elements in the j-th column.

In this subsection, we will need the following technical lemma.

Lemma 3.13. Let D = {(di1, . . . , din)}i∈N be a sequence of tuples of elements of some infinite

set A. Then, there is a subsequence D̃ ⊆ D such that

(1) for each j = 1, 2, . . . , n, Cj(D̃) contains either only one element or infinitely many
pairwise different elements;

(2) any two columns either coincide or have no common elements.

Proof. If |C1(D)| < ∞, then choose a subsequence D1 of D such that |C1(D1)| = 1. If
|C1(D)| = ∞, then choose a subsequence D1 of D such that all the elements in the column
C1(D1) are pairwise different. Perform this procedure for the second column of the sequence
D1, i.e., choose from D1 a subsequence D2 such that C2(D2) consists of either only one
element or pairwise different elements. Perform this procedure for all the columns. After
that, we obtain a subsequence Dn = {(di1, di2, . . . , din)}i∈N of D such that every column either
consists of one element or all the elements are pairwise different. Without loss of generality,
we will assume that there is no column consisting of one element in the sequence Dn. Now,
let us prove that it is possible to choose a subsequence of Dn such that every two columns
either coincide or have no common elements.

Let n = 2. If the subsequence D2 has infinitely many rows in which the elements of two
columns di1 and di2 are equal, then choose the D2,= consisting of all these rows. Let there
be only a finite number of such rows. Then, consider the subsequence D2,̸= that does not
contain the rows such that di1 = di2. Consider the first row (d11, d

1
2) of D2,̸=. If the element d11

is in the sequence D2, ̸=, then it can be only in the second column and at most one time. Let
it be in the j-th row. Then, remove this row from D2, ̸=. Repeat the same procedure for the
element d12, i.e., if it is in the k-th row in the first column, then, if k ̸= j, remove this row
from D2, ̸=. Go to the next row in D2, ̸=. Performing a similar procedure, we remove at most
two rows from D2, ̸=. Note that the first row will not be removed. Performing this procedure
for all the rows, we obtain the subsequence D2, ̸= with only pairwise different elements.

If n > 2, then we perform the procedure described above for all the pairs of columns.
At each step for a selected pair of columns in the current subsequence D′ of Dn, we choose
a new subsequence D′′ and, for the next pair of columns, we perform the procedure on the
subsequence D′′. After performing the procedure on all the pairs of columns, we obtain a
subsequence D̃ that satisfies the condition of the lemma.
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To prove the main result of this paper, Theorem 3.16, we need the following lemma.
This lemma is a criterion for a predicate structure with one predicate to be equationally
Noetherian.

Lemma 3.14. An algebraic structure A = ⟨A,P (n)⟩ in a language with one predicate symbol

P (n) and constants from A is not equationally Noetherian if and only if there is a projection
P ′(k) of the predicate P (n) and an exact partition I of {1, . . . , k} such that at least one of
the following conditions is true:

• |I| > 1 and the algebraic structure A′ = ⟨A, P ′/I⟩ has a perfectly non-Noetherian substruc-
ture;

• |I| = 1 and the algebraic structure A′ = ⟨A,Q⟩, where Q = P ′/{{1}, {2, . . . , k}}, has a
non-Noetherian clique.

Proof. Since A is not equationally Noetherian, it follows from Lemma 3.4 that there is a se-
quence of elements {(ai1, . . . , aip)}i∈N ⊆ Ap and a sequence of equations {P (x1, . . . , xp, b

i
1, . . . ,

bit)}i∈N such that A ̸|= P (ai1, . . . , a
i
p, b

i
1, . . . , b

i
t) for all i and A |= P (ai1, . . . , a

i
p, b

j
1, . . . , b

j
t ) for

all j < i, where p+ t = n.
Consider the sequence D = {ai1, ai2, . . . , aip, bi1, bi2, . . . , bit}i∈N. It follows from Lemma 3.13

that there is a subsequence D̃ = {ai11 , a
i1
2 , . . . , a

i1
p , b

i1
1 , b

i1
2 , . . . , b

i1
t }i∈N of D such that every

column Cj(D̃), j = 1, 2, . . . , n, either contains only one element or contains infinitely many

elements, and every pair of columns Cj1(D̃) and Cj2(D̃) either coincide or have no common
elements.

Denote by J ⊂ {1, . . . , n} the set of indexes of columns of D̃ consisting of one element.

Let d = |J | and k = n− d. Let P
(k)

D̃
be the projection of the predicate P (n) onto J by using

the corresponding elements from the columns of the sequence D̃ with indexes in J .
Let I be an exact partition of the set {1, . . . , k} such that for every i, j ∈ N the columns

Ci(D̃) and Cj(D̃) coincide if and only if the indexes i, j belong to one element of the partition

I. Let PD̃,I = P
(k)

D̃
/I be the gluing of P

(k)

D̃
by the partition I.

Let the arity of the predicate PD̃,I be greater than 1. Then, all the elements from D̃

define a PD̃,I -perfectly non-Noetherian substructure, and, therefore, by Definition 3.9, the

structure A has a PD̃,I -perfectly non-Noetherian substructure.

Let the arity of the predicate PD̃,I be 1, i.e. |I| = 1. Then, it is easy to see that the

algebraic structure A′ = ⟨A,Q⟩, where Q = P
(k)

D̃
/{{1}, {2, . . . , k}}, contains a non-Noetherian

clique.
Let us prove the opposite direction now. Let an algebraic structure A′ = ⟨A, P/I⟩ contain

a P/I-perfectly non-Noetherian substructure, where I =
⊔m

j=1 Ij is an exact partition of

{1, . . . , n}. Then, by definition, there are sequences {(ai1, . . . , aip)}i∈N and {(bi1, . . . , bit)}i∈N,
where p + t = m, p ≠ 0, t ̸= 0, such that A ̸|= P/I(ai1, . . . , a

i
p, b

i
1, . . . , b

i
t) for all i, and

A |= P/I(ai1, . . . , a
i
p, b

j
1, . . . , b

j
t ) for all j < i. Restore the original predicate P by P/I and the

exact partition I in the following way. If i and j are in one element of the partition, then
we will identify elements in the i-th and j-th components. For the obtained sequences, the
conditions of Lemma 1.1 hold.

The case when an algebraic structure contains a non-Noetherian clique follows from
Remark 3.12.
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Above, we obtained the criterion for predicate structures with one predicate to be
equationally Noetherian. The next lemma allows us to generalize the obtained result to
languages with an arbitrary finite number of predicate symbols.

Lemma 3.15. An algebraic structure A = ⟨A,LA⟩ in a predicate language LA with constants
from A and a finite number of predicate symbols is not equationally Noetherian if and only
if there is a reduction L′

A of the language LA such that L′
A has only one predicate symbol,

and the algebraic structure A′ = ⟨A,L′
A⟩ is not equationally Noetherian.

Proof. Since A is not equationally Noetherian, it follows from Corollary 2.1 that there are se-
quences of equations S(X) and elements {ai}i∈N satisfying Lemma 1.1. From Proposition 3.1,
there is an infinite subsystem of equations SP ⊆ S written with only one predicate symbol
P of the language LA such that it is not equivalent to any of its subsystems because of
Corollary 2.1. Let L′

A consist of P and all the constant symbols from A. Note that the system
SP can be considered over the algebraic structure A′ = ⟨A,L′

A⟩, where the interpretations
of the symbols of the language L′

A coincide with the corresponding interpretations of these
symbols in the original algebraic structure A. Then A′ is not equationally Noetherian.

Lemmas 3.14 and 3.15, in the form of the following theorem, are a criterion for arbitrary
predicate structures to be equationally Noetherian in terms of forbidden substructures.

Theorem 3.16. An algebraic structure A = ⟨A,LA⟩ in a predicate language LA with
constants from A and a finite number of predicate symbols is not equationally Noetherian
if and only if for some predicate symbol P (n) of the language LA there is a projection P ′(k)

of the predicate P (n) and an exact partition I of {1, . . . , k} such that at least one of the
following conditions holds:

• |I| > 1 and the algebraic structure A′ = ⟨A, P ′/I⟩ contains a perfectly non-Noetherian
substructure;

• |I| = 1 and the algebraic structure A′ = ⟨A,Q⟩, where Q = P ′/{{1}, {2, . . . , k}}, contains a
non-Noetherian clique.

4. Equationally Noetherian graphs, hypergraphs, and partial orders

In this section, we give examples of the application of Theorem 3.16 to graphs, partial orders,
and hypergraphs.

Let L = {E(2)} be a language of graph theory. Consider the language LΓ containing
constants from the graph Γ. The statement that nodes u and v are adjacent can be written
in the form of the equation E(u, v) in the language LΓ. Note that the equation E(x, x)
is always false for simple graphs, and this equation is always true for graphs with loops.
Previously, in [3], all equationally Noetherian simple graphs and graphs with loops were
described in terms of forbidden subgraphs. The next theorem was the main result of that
paper.

Theorem 4.1. The following statements are true:

• A simple graph is not equationally Noetherian if and only if it is either perfectly non-
Noetherian or an overclique.

• A graph with loops is not equationally Noetherian if and only if it is perfectly non-
Noetherian.
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Figure 3: An example of a ≺-perfectly non-Noetherian substructure; an arc from bi to aj
means that aj ≺ bi

Note that the notion of a perfectly non-Noetherian graph coincides with the property of
containing a perfectly non-Noetherian substructure, and the notion of being an overclique
in the case of simple graphs is equivalent to the property of containing a non-Noetherian
clique. Graphs with loops do not contain non-Noetherian cliques because the predicate E is
reflexive for such graphs. Therefore, Theorem 4.1 is a specialization of Theorem 3.16 for
simple graphs and graphs with loops.

It is easy to see that every predicate structure with one predicate P (n), n > 2, can
be considered as a hypergraph in which the set of edges is the predicate P (n). Therefore,
Theorem 3.16 can be adapted for hypergraphs.

Previously, in [19], a criterion for non-strict partially ordered sets to be equationally
Noetherian was proved. The key notions for this criterion are the notions of upper and lower
cones. Let us recall them.

Let P = ⟨P,⪯⟩ be a partially ordered set, and A be a subset of it. Let A↑ = {x ∈
P | ∀a ∈ A a ⪯ x} and A↓ = {x ∈ P | ∀a ∈ A x ⪯ a}. The pair (A,A↑) is called the upper
base cone of A. An upper base cone of A is called finitely generated if there is a finite subset
B ⊆ A such that B↑ = A↑. Otherwise, if there is no such finite set, we say that it is infinitely
generated. The lower base cone of A can be defined similarly.

The main result of the paper [19] is the following theorem:

Theorem 4.2. A partially ordered set P is equationally Noetherian if and only if the upper
and lower base cones of A are finitely generated for every subset A of P.

Let us show how this theorem is connected to Theorem 3.16. Since the predicate ⪯ is not
symmetric, for partially ordered sets, there exist two perfectly non-Noetherian substructures:
for infinite systems of equations of the form x ⪯ bj and infinite systems of equations of
the form bj ⪯ x. For example, for equations of the form x ⪯ bj , a perfect non-Noetherian
partially ordered set can be depicted in the following way:

Remark 4.3. For all partially ordered sets P = ⟨P,⪯⟩, there is no non-Noetherian clique
because the predicate ⪯ is reflexive. Later we will show that for strict partial orders, there
is a non-Noetherian clique.
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Therefore, the following proposition connects Theorem 4.2 and the specialization of
Theorem 3.16 for non-strict partially ordered sets:

Proposition 4.4. Let P = ⟨P,⪯⟩ be a partially ordered set. Then the following statements
are equivalent:

(1) the partial order P is not equationally Noetherian;
(2) P contains a ⪯-perfectly non-Noetherian substructure;
(3) there is a subset B of P such that the upper or the lower base cone of B is infinitely

generated.

Proof. The equivalence 1 ⇐⇒ 2 follows from Theorem 3.16. The equivalence 1 ⇐⇒ 3
follows from Theorem 4.2. Therefore, 2 ⇐⇒ 3.

Now, consider strict linear orders. Upper and lower cones can be defined for them
similarly. The following proposition is a specialization of Theorem 3.16 for strict partial
orders:

Proposition 4.5. Let P = ⟨P,≺⟩ be a strict partially ordered set. Then the following
statements are equivalent:

(1) the partial order P is not equationally Noetherian;
(2) P contains a ≺-perfectly non-Noetherian substructure or a non-Noetherian clique;
(3) there is a subset B of P such that the upper or lower base cone of B is infinitely

generated.

Proof. The equivalence 1 ⇐⇒ 2 follows from Theorem 3.16. Let us prove that 2 ⇐⇒ 3.
2 ⇒ 3. Let P contain a ≺-perfectly non-Noetherian substructure, and let {ai}i∈N and

{bi}i∈N be the sequences defining the perfectly non-Noetherian substructure (see Picture 3).
Without loss of generality, we will consider only equations of the form x ≺ bi (otherwise, we
would be dealing with equations of the form bi ≺ x). Let us show that the lower base cone
of the set B = {bi}i∈N is infinitely generated. Let us assume the converse, i.e., there is a
finite subset C ⊊ B such that B↓ = C↓ = {x ∈ P | ∀c ∈ C x ≺ c}. Let C = {bi1 , . . . , biq}
and m = max{i1, . . . , iq}. Note that C↓ has elements ar for all r > m. They cannot belong

to B↓ because, for all ar, r > m, we have ar ̸≺ br. We have a contradiction. For equations
of the form bi ≺ x, the reasoning is similar with the difference that it is necessary to consider
the upper base cone of the set B.

Let P contain a non-Noetherian clique, i.e., there is a sequence {ai}i∈N ⊆ P such that
P ̸|= ai ≺ ai for all i (it is always true because the predicate ≺ is reflexive) and P |= ai ≺ aj
for all j < i. As in the case of a ≺-perfectly non-Noetherian substructure, show that the
lower base cone of B = {ai}i∈N is infinitely generated. Assume the converse, i. e. there is a
finite subset C ⊊ B such that B↓ = C↓ = {x ∈ P | ∀c ∈ C x ≺ c}. Let C = {ai1 , . . . , aiq}
and m = max{i1, . . . , iq}. Note that C↓ has elements ar for all r > m, which do not belong

to B↓. Contradiction. For equations of the form ai ≺ x, the reasoning is similar with the
difference that it is necessary to consider the upper base cone of B.

3 ⇒ 2. Let B be a subset of P such that the lower base cone of B is infinitely generated.
Let b0 be an element of B. Since the lower base cone of B is infinitely generated, there is an
element b1 ∈ B such that {b0, b1}↓ ⊊ {b0}↓. Fix a1 ∈ {b0}↓\{b0, b1}↓. Because the lower base
cone of B is infinitely generated, there is an element b2 ∈ B such that {b0, b1, b2}↓ ⊊ {b0, b1}↓.
Fix a2 ∈ {b0, b1}↓ \ {b0, b1, b2}↓. Continuing this procedure, we obtain sequences of elements
{ai}i∈N and {bi}i∈N such that P ̸|= ai ≺ bi for all i, and P |= ai ≺ bj for j < i.
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Figure 4: The partial order Z = ⟨Z,≺⟩ from Example 4.6

Note that for all different i and j, ai ̸= aj and bi ̸= bj . Then, by Lemma 3.13, for the
sequence {(ai, bi)}i∈N, there is a subsequence I ⊆ N such that the sequences {ai}i∈I and
{bi}i∈I either contain pairwise different elements or contain elements such that ai = bi for all
i ∈ I. In the first case, P contains a perfectly non-Noetherian substructure. In the second
case, the sequences {ai}i∈I and {bi}i∈I form a non-Noetherian clique.

If B is a subset such that its upper base cone is infinitely generated, the reasoning is
similar with the difference that it is necessary to use the predicate ≻.

Example 4.6. Consider the natural order of integers Z = ⟨Z,≺⟩. Note that the conditions
from Definition 3.11 hold for the sequence {i}i∈N, i.e., the order Z contains a non-Noetherian
clique. The sequences of elements {−2i}i∈N and equations {x ≺ −2i−1}i∈N, by Definition 3.9,
define a perfectly non-Noetherian substructure of Z.
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