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ON COUNTABLE ISOTYPIC STRUCTURES.
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Abstract. We obtain several results concerning the concept of isotypic structures. Namely
we prove that any field of finite transcendence degree over a prime subfield is defined by
types; then we construct isotypic but not isomorphic structures with countable underlying
sets: totally ordered sets, fields, and groups. This answers an old question by B. Plotkin
for groups.

To the memory of Ben Fine

1. Introduction

The concept of isotypicity for structures naturally arose within the framework of universal
algebraic geometry and logical geometry [12], [7], [3]. In the paper [15] it was formulated
as a kind of Morita-type logical equivalence on algebras. Namely,

Definition 1.1. Algebras 𝐻1 and 𝐻2 are logically similar if the categories of definable sets
over 𝐻1 and 𝐻2 are isomorphic.

This definition is related to the following one formulated by B.Plotkin in [10] for alge-
bras:

Definition 1.2. (see [10]). Let ℒ be a first order language and 𝐴, 𝐵 be ℒ- structures.
Then 𝐴 and 𝐵 are isotypic if for any finite tuple �̄� = (𝑎1, . . . , 𝑎𝑘) over 𝐴 there exists a tuple
�̄� = (𝑏1, . . . , 𝑏𝑘) over 𝐵 such that their types coincide, that is, tp𝐴(�̄�) = tp𝐵(�̄�), and vice
versa, where for a 𝑘-tuple �̄� we define tp𝐴(�̄�) as a set of all first order formulas in 𝑘 variables
that hold true for �̄�.

Isotypic algebras are discussed in [8],[11], [13], [14], [15], [17]. In particular, in this
paper we follow the definition from [8]:

Definition 1.3. (see [8]) We say that a structure 𝐴 is defined by types if any structure 𝐵
isotypic to 𝐴 is isomorphic to 𝐴.
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The major problem behind all the considerations which remain widely open is whether
two finitely generated isotypic groups are isomorphic, see [10]. Our paper can be viewed as
a step towards the clarification of this problem. It also answers the question about existence
of countable isotypic but not isomorphic groups. Note that it was recently found that there
are such groups in any cardinality bigger than contable, see [2, Remark 4.1].

The paper is structured as follows. In Section 2 we prove that any field of finite
transcendence degree over a prime subfield is defined by types. In Section 3 we give an
example of countable isotypic but not isomorphic totally ordered sets. In Section 4 we
construct countable isotypic but not isomorphic fields and groups.
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2. Isotypic fields of finite transcendence degree are isomorphic

In this Section we prove the following theorem.

Theorem 2.1. Any field of finite transcendence degree over a prime subfield is defined by
types.

Proof. We will denote the transcendence degree of a field 𝐾 by tr. deg𝐾.
Let 𝐸 be a field of finite transcendence degree over a prime subfield, and 𝐹 be a field

that is isotypic to 𝐸. Let us prove that 𝐸 ≃ 𝐹 .
First note that 𝐸 and 𝐹 are elementary equivalent; hence they have the same character-

istic, and hence the same prime subfield 𝑘. Let tr. deg𝐸 = 𝑛. Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐸𝑛 be a
transcendence basis of 𝐸. Then there exists 𝑏 = (𝑏1, . . . , 𝑏𝑛) ∈ 𝐹𝑛 such that tp𝐸(𝑎) = tp𝐹 (𝑏).
Then the elements 𝑏𝑖 do not satisfy any nontrivial equation with integer coefficients, hence
they are independent over 𝑘. Thus tr.deg(𝐹 ) ⩾ tr.deg(𝐸). Similarly, if 𝐹 has 𝑛 + 1
algebraically independent elements, then so does 𝐸. Therefore, tr.deg(𝐹 ) ⩽ tr.deg(𝐸).
Therefore, tr. deg𝐸 = tr. deg𝐹 = 𝑛; hence the elements 𝑏𝑖 form a transcendence basis of 𝐹 .

We may assume that 𝑎𝑖 = 𝑏𝑖 for all 𝑖; so that 𝐸 and 𝐹 share the common subfield
𝐾 = 𝑘(𝑎1, . . . , 𝑎𝑛), and both fields are algebraic over 𝐾. Since tp𝐸(𝑎) = tp𝐹 (𝑎), it follows
that any polynomial 𝑓 ∈ 𝐾[𝑥] has a root in 𝐸 if and only if it has a root in 𝐹 (existence of
a root is an existential formula on 𝑎 with one quantifier). Hence by [5][Lemma 20.6.3 (b)],
we have 𝐸 ≃ 𝐹 .

3. An example of countable isotypic but not isomorphic totally ordered
sets.

In this Section we prove the following theorem.

Theorem 3.1. There exist two countable isotypic but not isomorphic totally ordered sets.

See Corollary 3.7 below for the concrete example.

First we need some preparation.
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Definition 3.2. Let (𝐴,<) be a totally ordered set. Let 𝑥, 𝑦 ∈ 𝐴. Set

dist(𝑥, 𝑦) =

{︃
0, if 𝑥 = 𝑦,

|{𝑧 : 𝑥 < 𝑧 < 𝑦}|+ 1, if 𝑥 ̸= 𝑦.

So dist(𝑥, 𝑦) is an element of the set N0 ∪ {∞}.
For totally ordered sets (𝐴,<𝐴) and (𝐵,<𝐵) we denote by (𝐴×𝐵,<𝐴𝐵) the Cartesian

product 𝐴×𝐵 with the lexicographic order

(𝑎, 𝑏) <𝐴𝐵 (𝑎′, 𝑏′) ⇔ (𝑎 < 𝑎′ ∨ (𝑎 = 𝑎′ ∧ 𝑏 < 𝑏′)).

Let (Z, <Z) be the set of integers with the usual order. Note that for a totally ordered
set 𝐴, if we consider the product (𝐴× Z, <𝐴Z), we have

dist((𝑎, 𝑘), (𝑎′𝑘, )) =

{︃
∞, if 𝑎 ̸= 𝑎′,

|𝑘 − 𝑘′|, if 𝑎 = 𝑎′.

Proposition 3.3. Let (𝐴,<𝐴), (𝐵,<𝐵) be totally ordered sets. Set (𝐴′, <𝐴′) = (𝐴×Z, <𝐴Z)
and (𝐵′, <𝐵′) = (𝐵 × Z, <𝐵Z). Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ (𝐴′)𝑛 and 𝑏 = (𝑏1, . . . , 𝑏𝑛) ∈ (𝐵′)𝑛

be such that, firstly, 𝑎1 ⩽𝐴′ . . . ⩽𝐴′ 𝑎𝑛, and 𝑏1 ⩽𝐵′ . . . ⩽𝐵′ 𝑏𝑛; and secondly, for any
1 ⩽ 𝑖 ⩽ 𝑛− 1 we have dist𝐴′(𝑎𝑖, 𝑎𝑖+1) = dist𝐵′(𝑏𝑖, 𝑏𝑖+1). Then tp𝐴′(𝑎) = tp𝐵′(𝑏).

Proof. To prove that tp𝐴′(𝑎) = tp𝐵′(𝑏) is the same as prove that (𝐴′, <𝐴′ , 𝑎) and (𝐵′, <𝐵′ , 𝑏)
are elementary equivalent in the language of ordered sets with 𝑛 constants (constant can
be understand as an unary predicate indicating that given element is this constant). So we
can do it by showing that for any 𝑁 ∈ N in the corresponding Ehrenfeucht-Fraisse game of
length 𝑁 the duplicator has a winning strategy.

Fix the number 𝑁 . By [16, Theorem 1.8] the tuples 𝑎 and 𝑏 are 𝑁 -equivalent (see
definition in [16, Section 1.1.]) in the language of ordered sets. Let 𝑎𝑛+𝑘 ∈ 𝐴′ and 𝑏𝑛+𝑘 ∈ 𝐵′

be the elements chosen at 𝑘-th turn of the game. The duplicator’s winning strategy is to
make choice in such a way that the tuples (𝑎1, . . . , 𝑎𝑛+𝑘) and (𝑏1, . . . , 𝑏𝑛+𝑘) be (𝑁 − 𝑘)-
equivalent. He can do it by the definition of 𝑁 -equivalence. In this case, in the end of the
game the tuples (𝑎1, . . . , 𝑎𝑛+𝑁 ) and (𝑏1, . . . , 𝑏𝑛+𝑁 ) will be 0-equivalent, i.e the order on them
will be the same. In particular that means that (𝑎𝑛+1, . . . , 𝑎𝑛+𝑁 ) and (𝑏𝑛+1, . . . , 𝑏𝑛+𝑁 ) are
in the same order and for any 1 ⩽ 𝑘 ⩽ 𝑛 and 𝑛+1 ⩽ 𝑙 ⩽ 𝑛+𝑁 we have 𝑎𝑘 = 𝑎𝑙 ⇔ 𝑏𝑘 = 𝑏𝑙,
which means that the duplicator won.

The proposition above allows us to construct many examples of isotypic totally ordered
sets. Namely we have the following corollary.

Corollary 3.4. Let (𝐴,<𝐴) and (𝐵,<𝐵) be infinite totally ordered sets. Then the totally
ordered sets (𝐴× Z, <𝐴Z) and (𝐵 × Z, <𝐵Z) are isotypic.

Proof. It follows from the fact that if a totally ordered set (𝐴,<𝐴) is infinite, then for every

(𝑑1, . . . , 𝑑𝑛−1) ∈ (N0 ∪ {∞})𝑛−1 there exists (𝑎1, . . . , 𝑎𝑛) ∈ (𝐴×Z)𝑛 such that dist𝐴×Z(𝑎𝑖, 𝑎𝑖+1) =
𝑑𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛− 1.

Remark 3.5. It is well known (see for example [6, Proposition 2.4.10]) that for any (𝐴,<𝐴

) and (𝐵,<𝐵) the totally ordered sets (𝐴 × Z, <𝐴Z) and (𝐵 × Z, <𝐵Z) are elementary
equivalent.

The following lemma shows that these isotypic totally ordered sets are not isomorphic
to each other.
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Lemma 3.6. Let (𝐴,<𝐴) and (𝐵,<𝐵) be totally ordered sets such that (𝐴 × Z, <𝐴Z) ≃
(𝐵 × Z, <𝐵Z). Then (𝐴,<𝐴) ≃ (𝐵,<𝐵).

Proof. It follows from the fact that (𝐴,<𝐴) is the quotient of (𝐴× Z, <𝐴Z) by equivalence
relation 𝑎 ∼ 𝑎′ ⇔ dist(𝑎, 𝑎′) <∞; and this quotient inherits the order.

Now we can construct our example.

Corollary 3.7. The pair (Z×Z, <ZZ) and (Q×Z, <QZ) is an example of countable isotypic
but not isomorphic totally ordered set.

4. Examples of countable isotypic but not isomorphic fields and groups.

In this Section we prove the following theorems.

Theorem 4.1. There exist two countable isotypic but not isomorphic rings.

See Corollary 4.6 below for the concrete example.

Theorem 4.2. There exist two countable isotypic but not isomorphic groups.

See Corollary 4.7 below for the concrete example.

Here is how our construction goes.

Definition 4.3. For a totally ordered set (𝐴,<𝐴) we define the ordered abelian group Γ𝐴 as⨁︀
𝑎∈𝐴(Q,+) with the lexicographic order (the positive elements are those with the highest

non-zero component being positive). Then we construct the valued field 𝐾𝐴 as follows:
take the field Q(𝑥𝑎 : 𝑎 ∈ 𝐴), where 𝑥𝑎 are algebraically independent variables; add all the
rational powers of the variables 𝑥𝑎; define the non-archimedean valuation 𝑣 with values in
Γ𝐴 to be zero on Q ∖ {0} and such that for all 𝑎 ∈ 𝐴 and 𝑞 ∈ Q the valuation 𝑣(𝑥𝑞𝑎) has 𝑞 in
the component that correspond to 𝑎 and zero in all the other components; define 𝐾𝐴 to be
the henselization of this field with respect to the valuation 𝑣, with the natural extension of
that valuation (for the notion of henselization see, for example, [4, Section 5.2]).

Proposition 4.4. Let (𝐴,<𝐴), (𝐵,<𝐵) be infinite totally ordered sets. Then the fields 𝐾𝐴

and 𝐾𝐵 are isotypic.

Proof. Take 𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ 𝐾𝑛
𝐴 and let us prove that there exists 𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ 𝐾𝑛

𝐵

such that tp𝐾𝐴
(𝜉) = tp𝐾𝐵

(𝜁).
Each element 𝜉𝑖 is a root of some polynomial over Q(𝑥𝑎 : 𝑎 ∈ 𝐴). Each of these polyno-

mials has finitely many coefficients, and for each coefficient there are finitely many elements
𝑎 ∈ 𝐴 such that the variable 𝑥𝑎 is involved. Let 𝑆 = (𝑎1, . . . , 𝑎𝑁 ) ⊆ 𝐴 be the set of all these
elements, and let 𝑎1 < . . . < 𝑎𝑁 .

The field 𝐾𝐴 has a unique valuation preserving embedding in the completion of the
field Q(𝑥𝑞𝑎 : 𝑎 ∈ 𝐴, 𝑞 ∈ Q). Thus each of the elements 𝜉𝑖 can be presented as a power
series in 𝑥𝑞𝑎 and clearly those series involve only 𝑥𝑞𝑎 with 𝑎 ∈ 𝑆. Now choose elements
𝑏1, . . . , 𝑏𝑁 ∈ 𝐵 such that 𝑏1 < . . . < 𝑏𝑁 . Then define 𝜁𝑖 to be the same power series as
𝜉𝑖 with each 𝑥𝑎𝑘 replaced by 𝑥𝑏𝑘 . Note that 𝜁𝑖 are algebraic over Q(𝑥𝑏 : 𝑏 ∈ 𝐵) and hence
belong to 𝐾𝐵, because the residue field has characteristic zero and hence by [4, Theorem
4.1.10] the henselization is algebraically maximal.
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Now let us prove that tp𝐾𝐴
(𝜉) = tp𝐾𝐵

(𝜁). Consider the triples (𝐾𝐴,Γ𝐴,Q) and
(𝐾𝐵,Γ𝐵,Q) as structures in the three-sorted Pas language: it contains ring operations
for the first and third sorts, group operation and order relation for the second sort, the
valuation map 𝑣 from the first sort to the second one, and the angular component map ac
from the first sort to the third one. We define the angular component map for 𝐾𝐴 and 𝐾𝐵

as the map that takes the lowest coefficient in the corresponding power series.
Now we prove an even stronger statement: any first order formula 𝑃 (𝑢1, . . . , 𝑢𝑛) in the

Pas language in 𝑛 variables from the first sort has the same value on 𝜉 and 𝜁. It follows
from [9] that in the theory of henselian valued fields with angular components where the
residue field has characteristic zero any formula is equivalent to a boolean combination of
formulas of the following types:

∙ 𝜙(𝑢), where 𝜙 is a quantifier free formula in the language of rings;
∙ 𝜓(𝑣(𝑓1(𝑢)), ..., 𝑣(𝑓𝑘(𝑢))), where 𝜓 is a formula in the language of ordered groups and

𝑓𝑖 are terms in the ring language.
∙ 𝜃(ac(𝑔1(𝑢)), ..., ac(𝑔𝑘(𝑢))), where 𝜃 is a formula in the ring language and 𝑔𝑖 are terms

in the ring language.
Moreover, by [6, Corollary 3.1.17 ] the theory of ordered divisible abelian groups has

quantifier elimination; hence in the second item 𝜓 can be taken quantifier free. Now the first
two types of formulas have the same value on 𝜉 and 𝜁 because 𝜉 and 𝜁 lie in the isomorphic
substructures, with isomorphism that takes 𝜉 to 𝜁 and the formulas are quantifier free. The
third type gives the same value because the corresponded angular components are equal.

Proposition 4.5. Let (𝐴,<𝐴) and (𝐵,<𝐵) be totally ordered sets such that 𝐾𝐴 ≃ 𝐾𝐵 (as
fields). Then (𝐴,<𝐴) ≃ (𝐵,<𝐵).

Proof. First let us prove that the isomorphism must preserve the valuation ring. Assume
it does not. Then the field 𝐾𝐴 has two different valuation rings O1 and O2 with maximal
ideals M1 and M2, such that both fraction fields are Q and 𝐾𝐴 is henselian with respect
to both valuation. It follows then by [4, Theorem 4.4.2] that O1 and O2 are comparable,
i.e. one ring is contained in the other and the maximal ideals are included in the opposite
direction: say, O1 ⩽ O2 and M2 ⩽ M1. Therefore, the quotient ring O1/M2 has both
fraction field and residue field isomorphic to Q, which is only possible if O1/M2 ≃ Q, i.e.
O1 = O2.

Now for a valued field 𝐾 with the valuation ring O one can recover the valuation group
as 𝐾*/O* and the order can be recovered as [𝜉1] < [𝜉2] ⇔ 𝜉2/𝜉1 ∈ O. Therefore, Γ𝐴 and Γ𝐵

must be isomorphic as ordered groups.
Given an ordered abelian group Γ and elements 𝑔,ℎ ∈ Γ, we write 𝑔 ∼ ℎ if and only if

either |ℎ| ⩽ |𝑔| and for some natural number 𝑛 we have |𝑔| ⩽ 𝑛|ℎ|; or |𝑔| ⩽ |ℎ| and for some
natural number 𝑛 we have |ℎ| ⩽ 𝑛|𝑔|, where |𝑔| = max{𝑔,−𝑔}. An Archimedean class of Γ
is an equivalence class of ∼. The set of Archimedean classes inherits the order from Γ.

Note that the sets of Archimedean classes of Γ𝐴 and Γ𝐵 are precisely 𝐴 and 𝐵. There-
fore, we have (𝐴,<𝐴) ≃ (𝐵,<𝐵).

Corollary 4.6. The pair 𝐾Z and 𝐾Q is an example of countable isotypic but not isomorphic
fields.

Corollary 4.7. The pair SL(3,𝐾Z) and SL(3,𝐾Q) is an example of countable isotypic but
not isomorphic groups.
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Proof. Since the fields 𝐾Z and 𝐾Q are isotypic, it easily follows that the groups SL(3,𝐾Z)
and SL(3,𝐾Q) are isotypic. Further since the fields 𝐾Z and 𝐾Q are not isomorphic, it
follows from [1] that the groups SL(3,𝐾Z) and SL(3,𝐾Q) are not isomorphic.
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