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Abstract. For a finite Z-algebra R, i.e., for a Z-algebra which is a finitely generated
Z-module, we assume that R is explicitly given by a system of Z-module generators G, its
relation module Syz(G), and the structure constants of the multiplication in R. In this
setting we develop and analyze efficient algorithms for computing essential information
about R. First we provide polynomial time algorithms for solving linear systems of equations
over R and for basic ideal-theoretic operations in R. Then we develop ZPP (zero-error
probabilitic polynomial time) algorithms to compute the nilradical and the maximal ideals
of 0-dimensional affine algebras K[x1, . . . , xn]/I with K = Q or K = Fp. The task of
finding the associated primes of a finite Z-algebra R is reduced to these cases and solved in
ZPPIF (ZPP plus one integer factorization). With the same complexity, we calculate the
connected components of the set of minimal associated primes minPrimes(R) and then the
primitive idempotents of R. Finally, we prove that knowing an explicit representation of R
is polynomial time equivalent to knowing a strong Gröbner basis of an ideal I such that
R = Z[x1, . . . , xn]/I.

1. Introduction

Computing the radical and the primary decomposition of an ideal, the associated primes
and the primitive idempotents of an algebra, or the connected components of its spec-
trum, are among the hardest tasks in Computer Algebra. For a finitely generated algebra
R = K[x1, . . . , xn]/I over a field K with an ideal I that is given by its generators, the
usual solutions of these tasks involve computing Gröbner bases and factoring multivariate
polynomials over extension fields of K (see for instance [9], [15], [17], [21], [22], [23]).

The difficulty of the problem increases further when we consider algebras over the
integers, i.e., algebras of the form R = Z[x1, . . . , xn]/I with an ideal I given by a system of
generators. In this case we will also have to factor (potentially large) integers, as already
the example R = Z/nZ shows. Since the 1970s, various approaches have been taken to
tackle these tasks, starting with the case of an algebra R which is a finitely generated
Z-module (see [2], [4], [30], [27]). At the core of most of these algorithms lies the calculation
of strong Gröbner bases for ideals in Z[x1, . . . , xn] which tends to be quite demanding. It is
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also possible to apply more general algorithms for associative, not necessarily commutative
algebras here (see [10], [11], [28]), but we can expect the efficiency of such very general
methods to be usually even lower than the ones for commutative algebras.

The situation changes substantially when a Z-algebra R is explicitly given, i.e. a Z-
algebra for which we know a system of generators G = (g0, . . . , gn) of its additive group,
a system of generators of the Z-linear relation module SyzZ(G) ⊆ Zn+1, and the structure
constants cijk ∈ Z such that gi · gj =

∑n
k=0 cijkgk for i, j = 0, . . . , n.

To define algebras by their module generators and relations, as well as their structure
constants, is a very classical approach, followed for instance by Bourbaki in [7], Ch. III, §1,
Sect. 7. Knowing the structure constants is equivalent to knowing the multiplication matrices
of an algebra. In particular, when the algebra is defined over a field, this point of view is
one of the key methods to study 0-dimensional affine algebras and to solve 0-dimensional
polynomial systems (see for instance [8] and [23]).

In a recent paper [20], we encountered explicitly given Z-algebras in a different way:
when a non-commutative algebra is given by representing its left and right multiplications
via endomorphisms, one can efficiently compute a ring of scalars. As a result, the ring of
scalars is an explicitly given, finite commutative Z-algebra. For further examination of
the original rings, it is necessary to find algorithms that perform some of the operations
mentioned above on the ring of scalars. In [20] we formulated a few of those algorithms
using the calculation of strong Gröbner bases. Here we avoid Gröbner bases and provide
precise worst-case complexity bounds which are almost polynomial time.

Thus the main task tackled in this paper can be described as follows: assume that a finite
Z-algebra R is given explicitly, i.e., by generators, relations, and structure constants. Develop
algorithms for computing their nilradical, associated primes and maximal ideals, primitive
idempotents and connected components of Spec(R) with the lowest possible worst-case
complexity. More precisely, we shall show that all these tasks can be solved in ZPPIF, i.e.,
in zero-error probabilistic polynomial time plus possibly one integer factorization.

Let us discuss the contents of the paper in more detail. Throughout we work with an
explicitly given finite Z-algebra R defined as above. In Section 2 we start by using the
well-known facts that the Smith and Hermite normal forms of an integer matrix can be
calculated in polynomial time (see [19], [24], [31], [32]), in order to construct a polynomial
time algorithm for solving linear systems of equations over R (see Proposition 2.6). Based
on this algorithm we perform various operations with ideals in R efficiently, for instance
ideal intersections (see Proposition 2.9). Moreover, we are able to compute preimages under
the isomorphism given by the Chinese Remainder Theorem (see Proposition 2.10).

In Section 3 we prepare later applications to Z-algebras by reconsidering and reanalyzing
some algorithms for 0-dimensional algebras over a field K. In order to compute the nilradical
of an explicitly given K-algebra R, we need to calculate the factorization of univariate
polynomials over K. The currently best algorithms have polynomial time complexity (P)
in the case K = Q and zero-error probabilistic polynomial time complexity (ZPP) in the
case of a prime field Fp. Using such polynomial factorization algorithms, Algorithm 3.3 then
determines the nilradical of R with these time complexities (P resp. ZPP).

Next we want to compute the primary decomposition of the zero ideal of R. In the case
K = Fp, we apply the method of Frobenius spaces (see [23], Alg. 5.2.7) and get an algorithm
in ZPP (see Algorithm 3.6). In the case K = Q, we can use the method of [23], Alg. 5.4.2
and get an algorithm in P. Altogether, by applying the primary decomposition algorithms
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to R/Rad(0), we are able to find the maximal ideals of R in P and ZPP for K = Q and
K = Fp, respectively (see Corollary 3.8).

In Section 4 we then use the ideas of [27] to compute the associated primes of an
explicitly given finite Z-algebra R (see Algorithm 4.2). The method is to distinguish between
the prime ideals which contain an integer prime number and those which don’t. In both cases
the computation is reduced to the setting of the preceding section, i.e., to computations of
0-dimensional algebras over fields. Since the determination of associated primes may involve
the factorization of an integer, the best time complexity we can achieve here is ZPPIF, i.e.,
ZPP plus one integer factorization. More precisely, the integer which has to be factored is
the torsion exponent of the additive group of R.

In Section 5 we treat the next topics, namely the computation of the primitive idempo-
tents of an explicitly given finite Z-algebra R and the connected components of its prime
spectrum. It turns out that it is advisable to solve the latter task first. More precisely,
since R may have infinitely many prime ideals, we compute the connected components of the
set of minimal associated primes minPrimes(R) in Algorithm 5.6. This algorithm uses the
results of the preceding section, whence its worst-case time complexity is in ZPPIF. Finally,
we calculate the primitive idempotents of R in Algorithm 5.8 by lifting them from the
primitive idempontents of R/Rad(0). This lifting process is performed using Algorithm 5.1.
Once again the worst-case time complexity is in ZPPIF.

In the last section we connect the method of using an explicit representation of R to the
more traditional method of calculating a strong Gröbner basis, when R is given as R = P/I
with P = Z[x1, . . . , xn] and an ideal I in P whose generators are known. Starting with an
explicitly given finite Z-algebra R, we can compute in polynomial time a strong Gröbner
basis of a defining ideal I of R (see Corollary 6.5). For this direction we use a generalization
of the Buchberger-Möller Algorithm (see Algorithm 6.3). Conversely, starting with a strong
Gröbner basis of I, we can calculate an explicit representation of R in polynomial time (see
Algorithm 6.7). For this direction, we use a generalization of Macaulay’s Basis Theorem to
finite Z-algebras (see Proposition 6.6).

For the notation and basic definitions we adhere to conventions in [21] and [22]. All
algorithms in this paper were implemented in the computer algebra system ApCoCoA
(see [3]) and are available from the authors upon request. These implementations were used
to calculate the examples given in the various sections.

2. Polynomial Time Computations in Finite Z-Algebras

Let R be a finite Z-algebra, i.e., a Z-algebra which is a finitely generated Z-module. We
denote the additive group of R by R+. In this section we collect operations in R which can
be computed in polynomial time if a presentation of R is given as below.

Remark 2.1. (Explicitly Given Z-Algebras)
Subsequently we assume that a Z-algebra R is given by the following information.

(a) A set of generators G = {g0, . . . , gn} of the Z-module R+, together with a matrix
A = (aℓk) ∈ Matm,n+1(Z) whose rows generate the syzygy module SyzZ(G) of G.

(b) Structure constants cijk such that gigj =
∑n

k=0 cijkgk for i, j = 0, . . . , n.
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Notice that we can assume that g0 = 1, and encode this information as an ideal

I = ⟨xixj −
n∑

k=0

cijkxk,
n∑

k=0

aℓkgk | i, j = 1, . . . , n, ℓ = 1, . . . ,m⟩

in P = Z[x1, . . . , xn] such that R ∼= P/I. If R is given as above, we call it an explicitly
given Z-algebra.

The bit complexity of the matrix A in (a) which defines the Z-module structure of R+

is given by
β = (n+ 1)m log2(∥A∥) with ∥A∥ = max{|aℓk|}.

The bit complexity of the entire input defining the Z-algebra R is then given by

γ = ((n+ 1)3 + (n+ 1)m) log2(M) with M = max{|aℓk|, |cijk|}.
In this section we collect computations in R which can be performed in polynomial time

in β or γ, respectively. More precisely, we will use the following complexity classes.

Definition 2.2. (Polynomial Time Complexity Classes)
Consider an algorithm which takes a tuple of integers as input.

(a) The algorithm is in the complexity class P (polynomial time) if its running time is
bounded by a polynomial expression in the bit complexity of the input.

(b) The algorithm is in the complexity class ZPP (zero-error probabilistic polynomial
time) if it is a Las Vegas algorithm which has polynomial running time in the bit
complexity of the input.

(c) The algorithm is in the complexity class ZPPIF (zero-error probabilistic polynomial
time plus integer factorization) if, except for the factorization of one integer, the
algorithm is in ZPP and the bit size of the integer to be factored is bounded by a
polynomial expression in the bit complexity of the input.

It is useful to bring the Z-module presentation of R+ into a normal form.

Remark 2.3. Let A = (aij) ∈ Matm,n+1(Z) be the matrix whose rows are given by the
generators of Syz(G). Then there exist unimodular transformation matrices S ∈ Matm,m(Z)
and T ∈ Matn+1,n+1(Z) such that

S ·A · T =



k1 0 · · · · · · · · · 0

0
. . .

. . .
...

...
. . . ku

. . .
...

...
. . . 0

. . .
...

...
. . .

. . . 0
0 · · · · · · · · · 0 0


and ki divides kj for i < j. This matrix is called the Smith normal form of A. It yields
the following isomorphism:

R+ ∼= Zr ⊕ Z/k1Z⊕ · · · ⊕ Z/kuZ.
The numbers r and k1, . . . , ku are uniquely determined by R+. We call r the rank and
k1, . . . , ku the invariant factors of R+. The largest invariant factor ku is the exponent of
the torsion subgroup of R+. We call it the torsion exponent τ of R+.
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In the following we shall show that certain algorithms run in polynomial time by reducing
them to the following computations.

Remark 2.4. (Complexity of Integer Linear Algebra Operations)

(a) The Smith and the Hermite normal form of a matrix A ∈ Matm,n(Z) can be computed
in polynomial time, as first shown by Kannan and Bachem [19] in 1979. Currently,
the fastest deterministic algorithm for computing the Smith normal form is the one
developed by Storjohann [31]. Note that in contrast to [19] this algorithm does not
produce the unimodular transformation matrices.

(b) Solving linear systems of equations over the integers can be reduced to computing
a Smith normal form together with the unimodular transformation matrices (see for
instance [24]). If the linear system is of the form Ax = b where A ∈ Matm,n(Z) and
b ∈ Matn,1(Z), then generators of the solution space can be computed in polynomial
time in n, m, ∥A∥, ∥b∥ and the rank of A. Here ∥A∥ denotes the maximal absolute value
of the entries of A. A concrete complexity bound is given in [32], Theorem 19.

(c) Computing the intersection of free submodules of Zn can be achieved by computing a
basis of the solution space of an appropriate linear system of equations. The problem
therefore reduces to (b).

Since the Smith normal form can be computed in polynomial time, it follows that the
bit complexity of the torsion exponent of R is bounded by a polynomial in β. Below we give
a concrete complexity bound.

Lemma 2.5. Let R be an explicitly given finite Z-algebra. Then the bit complexity of the
torsion exponent τ is bounded by n log2(n ∥A∥).

Proof. The product of the invariant factors of R+ is given by the gcd of all maximal rank
minors of A. The torsion exponent is therefore bounded by the absolute value of a non-zero
maximal rank minor of A. Hadamard’s inequality then yields τ ≤ nn/2 ∥A∥, which means
the bit complexity of τ is bounded by n log2(n ∥A∥).

Solving a linear system of equations over R can be reduced to solving a linear system
over the integers.

Proposition 2.6. (Solving Systems of Linear Equations over R)
Let R be an explicitly given finite Z-algebra and f1, . . . , fp ∈ R. For k = 1, . . . , p, we write
fk = bk0g0 + · · ·+ bkngn with bkj ∈ Z. Let y1, . . . , yp be further indeterminates. Consider
the following homogeneous linear equation over R.

f1y1 + · · ·+ fpyp = 0 (i)

Let e0, . . . , en ∈ Zn+1 be the standard basis vectors. For the following system of homogeneous
linear equations in the indeterminates zki and wj over Z, let L be the projection of the
solution space onto the z-coordinates.

p∑
k=1

n∑
i,j,ℓ=0

zkibkjcijℓeℓ −
m∑
j=1

n∑
i=0

wjaijei = 0 (ii)

Then the following conditions are equivalent.

(a) A tuple (h1, . . . , hp) ∈ Rp with hk = dk0g0 + · · ·+ dkngn ∈ R and dki ∈ Z is a solution
of (i).

(b) The tuple (dki) is an element of L.



2:6 M. Kreuzer and F. Walsh Vol. 15:2

Proof. The tuple (h1, . . . , hp) is a solution of (i) if and only if
p∑

k=1

n∑
i,j=0

bkidkjgigj = 0.

This is the case if and only if there exist α1, . . . , αm ∈ Z such that the left hand side is
equal to

∑m
j=1

∑n
i=1 αjaijgi. The claim then follows by rewriting the products gigj using the

structure constants of R and applying the canonical isomorphism R ∼= Zn+1/ Syz(G).

Let us illustrate this proposition with an example.

Example 2.7. Let R be the finite Z-algebra generated by G = {g1, g2, g3}, where Syz(G) =
⟨(3, 0, 0), (−1, 0, 4)⟩, and where the multiplication in R is commutative and given by g21 = 3g1,
g1g3 = 2g2, g

2
2 = g1+ g2, and gigj = 0 for all other combinations. Consider the homogeneous

linear equation
(2g3)x1 + (g1 + g3)x2 + (2g1)x3 = 0

over R. Every solution is of the form (h1, h2, h3) ∈ R3 with hi = di1g1 + di2g2 + di3g3, where
dij ∈ Z. To compute generators of the solution space L ⊆ R3, we follow Proposition 2.6 and
substitute xi by hi. Using the structure constants, we then replace products gigj by Z-linear
combinations of the generators and obtain the system of equations

4d11g2 = 0

3d21g1 + 2d23g2 + 2d21g2 = 0

6d31g1 + 4d33g2 = 0.

By substituting gi with ei and taking into account the generators of Syz(G), we obtain a
system of linear equations over Z which is given by the following matrix.0 0 0 3 0 0 6 0 0 3 −1

4 0 0 2 0 2 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 4


After projecting onto the first nine components of its solution space we obtain for example
the tuple (0, 0, 0, 1, 0, 1, 0, 0,−1) ∈ Z9 which corresponds to the tuple (0, g1 + g2,−g3) ∈ R3.
The whole solution space in R3 is generated by this tuple together with seven further tuples.

Proposition 2.6 yields the following complexity bound for solving linear equations.

Corollary 2.8. Let R be an explicitly given finite Z-algebra. Generators of the solution
space of a linear equation over R as in Proposition 2.6 can be computed in polynomial time
in the bit complexity of the input which is given by γ (for R) and by p(n+ 1) log2(M) where
M = max{bkj} (for the elements f1, . . . , fp).

Proof. The coefficients in the system of equations (ii) in Proposition 2.6 are bkj , cijℓ and aij .
The claim therefore follows immediately from Remark 2.4.b.

The next proposition collects elementary operations in an explicitly given finite Z-algebra
which can be performed in polynomial time.

Proposition 2.9. (Elementary Ideal-Theoretic Operations)
Let R be an explicitly given finite Z-algebra, and let J = ⟨f1, . . . , fk⟩ as well as J ′ =
⟨h1, . . . , hℓ⟩ be ideals in R. We assume that the elements fi, hj ∈ R are given as elements in
Z[g0, . . . , gn] and that the bit complexity of these sets of polynomials is given by δJ and δJ ′,
respectively.
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(a) The rank and the invariant factors of R+ can be computed in polynomial time in β.
(b) Let G = {g0, . . . , gn} be the set of residue classes in R/J of the elements of G. Then

generators of SyzZ(G) can be computed in polynomial time in γ + δJ .
(c) We can decide whether J ⊆ J ′ in polynomial time in γ + δJ + δJ ′.
(d) We can decide whether J = ⟨1⟩ in polynomial time in γ + δJ .
(e) Generators of the intersection J ∩ J ′ can be computed in polynomial time in γ + δJ + δJ ′ .

Proof. To prove (a), let A = (aij) ∈ Matn+1,m(Z) be the matrix whose rows are given by the
generators of SyzZ(G). The rank and the invariant factors of R+ can be determined from
the Smith normal form of A, which can be computed in polynomial time by Remark 2.4.

Next we show (b). Using the structure constants, we can rewrite the fi as linear
combinations bi0g0 + · · ·+ bingn of the generators of R+. This means that we obtain integer
tuples v1, . . . , vr ∈ Zn+1 with vi = (bi0, . . . , bin) such that v1, . . . , vr together with the
generators of SyzZ(G) generate SyzZ(G).

Using (b), we can compute presentations R/J ∼= Zn+1/V1 and R/J
′ ∼= Zn+1/V2, where V1

and V2 are submodules of Zn+1, in polynomial time. The ideal J is then contained in J ′ if
and only if V1 ⊆ V2. This proves (c).

To show (d), we use part (b) to compute a presentation R/J ∼= Zn+1/ SyzZ(G). We can
then apply (a) and compute the rank and the invariant factors of R/J in polynomial time.
Notice that we have J = ⟨1⟩ if and only if the rank of R/J is zero and all invariant factors
are equal to one.

For the proof of (e), we let

M =

(
1 f1 · · · fk 0 · · · 0
1 0 · · · 0 h1 · · · hℓ

)
.

Generators of SyzR(M) can be computed in polynomial time by solving an appropriate
linear system of equations over R using Proposition 2.6. The first non-zero coordinates of
the generators then generate J ∩ J ′ by [21], Proposition 3.2.3.

The following algorithm will come in handy when we compute the primitive idempotents
of a finite Z-algebra.

Algorithm 2.10. (The Chinese Remainder Preimage Algorithm)
Let R be an explicitly given finite Z-algebra. In particular, we assume that R+ is generated
by G = {g0, . . . , gn} with g0 = 1. Let J1, . . . , Js be pairwise comaximal ideals in R, and
assume that J1 ∩ · · · ∩ Js = ⟨0⟩. Given i ∈ {1, . . . , s}, consider the following sequence of
instructions.

(1) Using Proposition 2.9.b, compute Z-submodules Vj ⊆ Zn+1 such that we have R/Jj ∼=
Zn+1/Vj for j = 1, . . . , s.

(2) Compute a Z-module basis {v1, . . . , vk} ⊆ Zn+1 of
⋂

j ̸=i Vj.

(3) Let {w1, . . . , wℓ} ⊆ Zn+1 be a Z-basis of Vi. Compute a solution (ci) ∈ Zk+ℓ of the linear
system of equations in the indeterminates y1, . . . , yk+ℓ given by

v1y1 + · · ·+ vkyk = w1yk+1 + · · ·+ wℓyk+ℓ + (1, 0, . . . , 0).

(4) Let h = (h0, . . . , hn) = c1v1+· · ·+ckvk ∈ Zn+1. Return the element f = h0g0+· · ·+hngn
of R and stop.
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This is a polynomial time algorithm which computes an element f ∈ R such that f is mapped
to the i-th canonical basis vector ei under the canonical Z-linear map

φ : R −→ R/J1 × · · · ×R/Js.

Proof. The tuple h satisfies h ∈
⋂

j ̸=i Vj and h−(1, 0, . . . , 0) ∈ Vi. This shows that the residue

class of h in Zn+1/ SyzZ(G) is mapped to ei under the canonical map ψ : Zn+1/ SyzZ(G) −→
Zn+1/V1 × · · · × Zn+1/Vs. Hence f is mapped to ei under the map φ. Steps (1) and (2) of
the algorithm can be performed in polynomial time by Proposition 2.9. The linear system
in Step (3) can also be solved in polynomial time by Remark 2.4.

Let us apply this algorithm to a concrete case.

Example 2.11. Consider the finite Z-algebra R = Z[x, y]/⟨x3 + x2, 3x2 +3x, xy+ y, y2, 2y⟩.
It is generated as a Z-module by the elements of G = (1, x̄2, x̄, ȳ), and SyzZ(G) is generated
by (0, 0, 0, 2), (0, 3, 3, 0). Consider the ideals J1 = ⟨ȳ2, x̄+ 1, 2ȳ⟩ and J2 = ⟨x̄2, 3x̄, ȳ⟩ in R.
Our goal is to compute f ∈ R such that f is mapped to e2 under the canonical Z-linear map
R→ R/J1 ×R/J2.

(1) Using Proposition 2.9.b, we find V1 = ⟨(1, 0, 1, 0), (0, 0, 0, 2), (−1, 1, 0, 0)⟩ and V2 =
⟨(0, 0, 3, 0), (0, 1, 0, 0), (0, 0, 0, 1)⟩ such that R/J1 ∼= Z4/V1 and R/J2 ∼= Z4/V2.

(2) We have
⋂

j ̸=2 Vj = V1.

(3) A solution of the linear system
1 0 −1 0 0 0 −1
0 0 1 0 −1 0 0
1 0 0 −3 0 0 0
0 2 0 0 0 −1 0

 ·

y1...
y7

 =


1
0
0
0


is given by (3, 0, 2, 1, 2, 0) ∈ Z6.

(4) This solution yields the tuple h = (1, 2, 3, 0) which corresponds to the element f =
1 + 3x̄+ 2x̄2 in R. It is the preimage of e2 under the canonical map R→ R/J1 ×R/J2.

3. Computing the Maximal Ideals of a 0-Dimensional K-Algebra

In this section we assume that K is either the field of rational numbers Q or a finite field Fp.
Our goal is to study the complexity of computing the maximal components of a 0-dimensional
K-algebra R which is explicitly given in the following sense.

Definition 3.1. A 0-dimensionalK-algebra R is explicitly given if it is given by aK-vector
space basis B = {b1, . . . , bn} and structure constants cijk such that bibj =

∑n
k=1 cijkbk for

all i, j = 1, . . . , n.

Note that a 0-dimensional K-algebra as in this definition can equivalently be given by
a basis together with multiplication matrices. The crucial step in computing the maximal
ideals of R is the factorization of univariate polynomials over K.
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Remark 3.2. In 1982 Lenstra et al. [26] published a deterministic algorithm for factoring
univariate polynomials in Q[x]. The running time of their algorithm is polynomial in deg(f)

and log(|f |), where for a polynomial f =
∑

i aix
i ∈ Q[x] we define |f | =

√∑
i a

2
i . This

means it requires only a polynomial number of bit operations measured in the input size.
For univariate polynomials over finite fields, the situation is slightly more complicated.

A deterministic algorithm for factoring polynomials over finite fields was presented by
Berlekamp in [5]. Its running time for factoring a polynomial f ∈ Fp is polynomial in p
and deg(f). But this is not polynomial in the bit complexity of the input which is given
by (1 + deg(f)) log2(p). In 1970 Berlekamp published a Las Vegas algorithm [6] for the
problem which has polynomial running time in the input. Since then many new and faster
algorithms were developed, see e.g. [16]. But it is still unknown whether the factorization can
be performed in deterministic polynomial time. It was shown by Evdokimov [12] that under
the generalized Riemann hypothesis (GRH) the problem can be solved in subexponential
time. Furthermore, there have been efforts to drop the GHR assumption (see [18]). In
addition, there exist deterministic polynomial time algorithms [14, 29] for many special
classes of polynomials over finite fields. Indeed, it is conjectured that the set of polynomials
which do not satisfy any of the conditions in [29] is empty.

The first step in computing the maximal ideals of R is to compute its nilradical.

Algorithm 3.3. (Computing the Nilradical of a 0-Dimensional Algebra)
Let R be an explicitly given 0-dimensional K-algebra. Consider the following sequence of
instructions.

(1) Let J = ⟨0⟩ and B = {b1, . . . , bn}.
(2) For i = 1, . . . , n, perform the following steps (3)-(7).
(3) Compute the minimal polynomial µbi+J(z) of bi + J in R/J .
(4) Calculate gi(z) = sqfree(µbi+J(z)).
(5) Replace J with J + ⟨gi(bi)⟩.
(6) Using the structure constants, rewrite gi(bi) and try to obtain a representation of some

bj ∈ B as a linear combination of the remaining elements. If such linear combinations
exist remove those elements bj from B and update the structure constants to obtain an
explicit presentation of R/J .

(7) If deg(gi(z)) = dimK(R/J), return the ideal J together with the explicit presentation
of R/J and stop.

(8) Return the ideal J together with the explicit presentation of R/J and stop.

This is an algorithm which computes the nilradical Rad(0) of R together with an explicit
presentation of R/Rad(0). If K = Q, or if K is a finite prime field, then it has polynomial
running time. In particular, the bit complexity of the explicit representation of R/Rad(0) is
polynomially bounded by the bit complexity of the input.

Proof. The correctness of this algorithm is shown in [23] Algorithm 5.4.2. It remains to
prove that it runs in polynomial time. The minimal polynomial in step (3) can be computed
using [23], Algorithm 1.1.8. It involves finding linear dependencies among the elements 1+J ,

bi + J , . . . , bdi + J where d = dimK(R/J). Using the structure constants, we rewrite bji for
j = 2, . . . , d as linear combinations of the elements of B. The linear dependencies can then
clearly be found in polynomial time. The squarefree part of gi(z) in step (4) can also be
computed in polynomial time (see [17] Section 14.6).
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The bit complexity of the presentation of R/Rad(0) is polynomially bounded by the
bit complexity of the input, since during each iteration the bit complexity of the structure
constants obtained in step (6) is polynomially bounded by the bit complexity of the structure
constants of the previous iteration.

The following example illustrates how this algorithm can be applied.

Example 3.4. Consider the zero-dimensional Q-algebra R with basis {1, b1, b2, b3} and
multiplication given by b21 = 2b1−1, b1b2 = b3, b1b3 = 2b3− b1, b22 = −b2−1, b2b3 = −b3− b1
and b23 = −2b3 + b2 − 2b1 + 1.

(1) We let J = ⟨0⟩ and B = {b1, b2, b3, 1}.
(3) The minimal polynomial µb1(z) of b1 is z2 − 2z + 1.
(4) We calculate g1(z) = sqfree(µb1(z)) = z − 1.
(5) We set J = ⟨b1 − 1⟩.
(6) Substituting b1 = 1 into b1b2 = b3 yields b2 = b3. Therefore we set B = {b2, 1} and

obtain dimQ(R/J) = 2.
(3) The minimal polynomial µb2+J(z) of b2 + J is z2 + z + 1.
(4) We calculate g2(z) = sqfree(µb2(z)) = µb2(z).
(5) We set J = ⟨b1 − 1, b22 + b2 + 1⟩.
(6) Rewriting b22 + b2 + 1 using b22 = −b2 − 1, we only obtain the trivial relation given by

0 = 0. Thus B is not updated and dimQ(R/J) = 2.
(7) Since dimQ(R/J) = 2 = deg(g2) we return the ideal J = ⟨b1 − 1, b22 + b2 + 1⟩ together

with the Q-basis {1, b̄2} of R/J and the structure constant b22 = −b2 − 1.

Having computed the nilradical of R, we can then obtain its maximal ideals as follows.
In the case K = Q, we can use Algorithm 7.2 in [25]. It has polynomial running time in the
bit complexity of the input. For K = Fp, we can only hope for an algorithm in ZPP since
we need to factor univariate polynomials over Fp. In the more general case of associative
algebras over finite fields, the complexity of computing their structure, i.e., their simple
components was studied in [13], [28], and [11]. But let us take advantage of the fact that we
are in the commutative case and analyze the complexity of the algorithm presented in [23],
which was inspired by [15]. In contrast to the methods cited above it has the advantage of
being well-suited for an actual implementation.

Definition 3.5. Let R be a 0-dimensional Fp-algebra.

(a) The map ϕp : R −→ R defined by a 7→ ap is an Fp-linear ring endomorphism of R. It is
called the Frobenius endomorphism of R.

(b) The Fp-vector subspace

Frobp(R) = {f ∈ R | fp − f = 0}
of R, i.e., the fixed-point space of R with respect to ϕp, is called the Frobenius space
of R.

In [23], Algorithm 5.2.7, it is explained how one can calculate the Frobenius space of a
0-dimensional Fp-algebra. Based on this result, we obtain the following algorithm.

Algorithm 3.6. (Primary Decomposition in Characteristic p)
Let R be an explicitly given 0-dimensional Fp-algebra. In particular, we assume that B =
{b1, . . . , bn} is a K-vector space basis of R. Consider the following sequence of instructions.
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(1) Form the multiplication matrix MB(ϕp) of the Frobenius endomorphism of R, and
compute the number s = n− rank(MB(ϕp)− In) of primary components of the zero ideal
of R. If s = 1 then return ⟨0⟩ and stop.

(2) Let L be the list consisting of the pair (⟨0⟩, s). Repeat steps (3)–(6) until the second
component of all pairs in L is 1. Then return the tuple consisting of all first components
of the pairs in L and stop.

(3) Choose the first pair (J, t) in L for which t > 1 and remove it from L.
(4) Using Algorithm 5.2.7 in [23], compute the Frobenius space of R/J . Choose a non-

constant element f in it.
(5) Calculate the minimal polynomial of the element f and factor it in the form µf (z) =

(z − a1) · · · (z − au) with a1, . . . , au ∈ Fp.
(6) For i = 1, . . . , u, let Ji = J + ⟨f − aj⟩. Compute the dimension di of Frobp(R/Ji) and

append the pair (Ji, di) to L.

This is an algorithm which calculates the list of primary components of the zero ideal of R.
It is in ZPP.

Proof. The correctness of this algorithm is shown in [23], Algorithm 5.2.11. In particular, it
is proved there that t = d1 + · · ·+ du throughout the course of this algorithm. Therefore
the number of iterations of steps (3)–(6) is bounded by s which in turn is bounded by the
vector space dimension n of R. Algorithm 5.2.7 in step (4) involves computing a basis for
the kernel of a matrix over K and can therefore be done in polynomial time. As discussed
in the proof of Algorithm 3.3, the minimal polynomial in step (5) can also be computed in
polynomial time. Computing its factorization is in ZPP by Remark 3.2.

The following example shows this algorithm at work.

Example 3.7. Consider the zero-dimensional F2-algebra R given by an F2-basis B =
{1, b1, b2, b3} and the multiplication b21 = b1, b1b2 = b3, b1b3 = b3, b

2
2 = 1, b2b3 = b1, and

b23 = b1.

(1) The structure constants provide for every b ∈ B a representation of b2 in terms of the
basis B. This yields the matrix

MB(ϕ2) =


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 ,

and we obtain s = 4 − rank(MB(ϕ2) − I4) = 4 − 2 = 2 for the number of primary
components.

(2) Let L = ((⟨0⟩, 2)).
(3) Choose the pair (⟨0⟩, 2), and let L = ().
(4) The kernel of the matrix MB(ϕ2)− I4 has the basis {(1, 0, 0, 0), (0, 1, 0, 0)}. Therefore

the Frobenius space of R is given by ⟨1, b1⟩. We choose f = b1.
(5) The minimal polynomial of f is given by µf (z) = z(z + 1).
(6) Let J1 = ⟨b1⟩ and J2 = ⟨b1 + 1⟩. Using the structure constants we see that the residue

classes of B′ = {1, b2} in R/J1 and R/J2 form a basis of the respective algebras. In
both cases we determine s = 2 − rank(MB̄′(ϕ2) − I2) = 2 − 1 = 1. Hence we set
L = (J1, 1), (J2, 1)).

(2) Since the second component of both pairs in L is 1, we return the primary components
⟨b1⟩ and ⟨b1 + 1⟩ of the zero ideal of R.
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Using this algorithm, we can now calculate the maximal ideals of explicitly given
0-dimensional algebras.

Corollary 3.8. (Complexity of Computing the Maximal Ideals)
Let K be the field of rational numbers or a finite prime field, and let R be an explicitly given
0-dimensional K-algebra.

(a) If K = Q, then the maximal ideals of R can be computed in polynomial time.
(b) If K = Fp, then the maximal ideals of R can be computed in ZPP.

Proof. Using Algorithm 3.3, we compute the nilradical Rad(0) of R in polynomial time.
This algorithm also yields an explicit presentation of R/Rad(0). If K = Q, we then apply
Algorithm 7.2 from [25] to R/Rad(0) and obtain the maximal ideals of R in polynomial
time. Similarly, in the case K = Fp, we apply Algorithm 3.6 to R/Rad(0).

For further details and more examples which illustrate the algorithms presented in this
section, we refer to Chapter 5 in [23].

4. Computing the Associated Primes of Finite Z-Algebras

In this section we let R be a finite Z-algebra. We show that the associated primes of R can be
computed in ZPPIF, if R is explicitly given. Note that the associated primes of R are given
by the primary decomposition of its nilradical Rad(0). Algorithms for computing the primary
decomposition of ideals in Z[x1, . . . , xn] date back to 1978 [4, 30]. More recently, Pfister et
al. [27] presented a slightly different approach. Inspired by this algorithm, we gave an efficient
algorithm in [20] for computing the primary decomposition of ideals I ⊆ Z[x1, . . . , xn] such
that P/I is a finite Z-algebra. Let us now apply this approach to explicitly given finite
Z-algebras.

The following lemma is used to split the computation into computing the associated
primes of 0-dimensional ideals in Q[x1, . . . , xn] and Fp[x1, . . . , xn].

Lemma 4.1. Let R = P/I be an explicitly given finite Z-algebra and let τ be its torsion
exponent.

(a) The ideal (I : ⟨τ⟩)/I is the torsion subgroup of R+.
(b) We have I = (I : ⟨τ⟩) ∩ (I + ⟨τ⟩).
(c) If R is finite, then I ∩ Z = ⟨τ⟩.

Proof. Part (a) follows immediately from the definition of the exponent of the torsion
subgroup of R+. It then implies I : ⟨τ⟩ = I : ⟨τ⟩∞, which means that claim (b) is a standard
lemma in commutative algebra. To prove (c), we note that the ring P/I is finite if and only
if there exists a positive integer k ∈ Z with I ∩ Z = ⟨k⟩. If such a number k exists, we have
k · f = 0 for all f ∈ R, and therefore τ | k. But we also have n · 1 = 0 in R = P/I, and
hence τ ∈ I. This implies k | τ , and thus k = τ .

The associated primes of R can now be computed as described in the following algorithm.

Algorithm 4.2. (Computing the Associated Primes)
Let R = P/I be an explicitly given finite Z-algebra. Consider the following sequence of
instructions.

1: Set L := [ ].
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2: Compute the torsion exponent τ of R+.
3: if the rank of R is not zero then
4: Compute the prime components p̄1 ∩ · · · ∩ p̄ℓ of I Q[x1, . . . , xn].
5: Compute p̄j ∩ P and append these ideals to L.
6: Recursively apply the algorithm to I + ⟨τ⟩ and obtain the set M .
7: Compute J :=

⋂
p∈L p.

8: Remove all ideals in M that contain J .
9: return L ∪M

10: else
11: Compute all prime factors p1, . . . , pr of τ .
12: Set M := [ ].
13: for i = 1, . . . , r do
14: Compute the prime components p̄1 ∩ · · · ∩ p̄m of I Fpi [x1, . . . , xn].
15: Compute the preimages pj of p̄j in P and append them to M .
16: end for
17: return M
18: end if

This is an algorithm which computes the associated primes p1, . . . , pk of R. It is in ZPPIF.

Proof. The correctness of the algorithm follows from Lemma 4.1 and Proposition 4.7 in [20].
Let us analyze the complexity of each of its steps. The torsion exponent and the rank of R
can be computed in polynomial time in β using Proposition 2.9.a, and the bit complexity
of the torsion exponent is polynomially bounded by Lemma 2.5. Since P/I is a finite
Z-algebra, the ideals IQ[x1, . . . , xn] and IFp[x1, . . . , xn] are 0-dimensional and therefore
define 0-dimensional Q- and Fp-algebras, respectively. Their vector space dimension is less
than or equal to the number of generators of R, and their structure constants are given by
the structure constants of R. Thus we obtain the maximal components in lines (4) and (14)
in polynomial and probabilistic polynomial time, respectively, by applying the algorithms in
Section 3. The intersection of the prime ideals in line (7) can be computed in polynomial
time by Proposition 2.9.e. Finally, Proposition 2.9.c allows us to check the containment of
ideals in line (8) in polynomial time.

In summary, all steps except for the integer prime factorization in line (11) are in ZPP.

Note that, since the exponent τ of R is the largest invariant factor of R, all other
invariant factors of R are divisors of τ . This means that we might already have a partial
factorization of τ . Let us compute the associated primes in a concrete case.

Example 4.3. Consider the finite Z-algebra R given by the explicit presentation R =
Z[x, y, z]/I with I =

〈
6z, 6y, x2 + x− 6, z2, y2, xy − y, xz − y, yz

〉
. We follow the above

algorithm and compute the associated primes of R.

(2) Using Proposition 2.9.a, we find that the torsion exponent of R is 6.
(4) Since the rank of R is 2, we then compute the minimal associated prime ideals of

IQ[x, y, z] using [23], Alg. 5.4.2 and obtain p̄1 = ⟨z, y, x+ 3⟩ as well as p̄2 = ⟨z, y, x− 2⟩.
(5) Let p1 = p̄1 ∩ P and p2 = p̄2 ∩ P .
(6) We apply the algorithm recursively to I + ⟨6⟩.

(11) Here we calculate the prime factorization 6 = 2 · 3.
(14) We determine the minimal associated primes p̄3 = ⟨x + 1, y, z⟩ and p̄4 = ⟨x, y, z⟩ of

IF3[x, y, z] using Algorithm 3.6.
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(15) Their canonical liftings are p3 = ⟨x+ 1, y, z, 3⟩ and p4 = ⟨x, y, z, 3⟩.
(14) We determine the minimal associated primes p̄5 = ⟨x + 1, y, z⟩ and p̄6 = ⟨x, y, z⟩ of

IF2[x, y, z] using Algorithm 3.6.
(15) Their canonical liftings are p5 = ⟨x+ 1, y, z, 2⟩ and p6 = ⟨x, y, z, 2⟩.
(7) We compute J = p1 ∩ p2 = ⟨z, y, x2 + x− 6⟩.
(8) The ideal J is contained in p3, p4, p5, and p6.
(9) The minimal associated prime ideals of R are given by p1 and p2.

5. Computing Primitive Idempotents

In this section our goal is to compute the primitive idempotents of an explicitly given finite
Z-algebra R. We describe a variant of the method presented in Section 4 of [20] and analyze
its complexity. We will use the fact that the idempotents modulo a nilpotent ideal can be
lifted. The following algorithm is based on Lemma 3.2.1 in [10].

Algorithm 5.1. (Lifting Idempotents)
Let R be an explicitly given finite Z-algebra, and let Rad(0) ⊆ R be its nilradical. Let e ∈ R
be such that e2 ≡ e mod Rad(0). Consider the following instructions.

(1) Set h = e.
(2) Compute f = h+ r − 2hr where r = h2 − h.
(3) Represent f2−f as a Z-linear combination f2−f = c0g0+ · · ·+cngn using the structure

constants.
(4) If (c0, . . . , cn) ∈ SyzZ(G), return f and stop. Otherwise set h = f and continue with

step (2).

This is an algorithm which computes an idempotent f ∈ R such that f ≡ e mod Rad(0).
Furthermore, if e is a primitive idempotent modulo Rad(0), then f is a primitive idempotent
in R.

Proof. The algorithm terminates since Rad(0) is a nilpotent ideal. To prove the correctness,

we show that if h is an idempotent modulo Rad(0)2
k
, then f is an idempotent modulo

Rad(0)2
k+1

. By assumption, we have h2−h ∈ Rad(0)2
k
, and therefore h2r−hr = (h2−h)r =

r2 ∈ Rad(0)2
k+1

. Then we get

f2 ≡ h2 + 2hr − 4h2r ≡ h+ r + 2hr − 4hr ≡ f mod Rad(0)2
k+1

and f ≡ h mod Rad(0)2
k
. Now assume that e mod Rad(0) is a primitive idempotent and

that f = e′ + e′′ can be written as the sum of two orthogonal idempotents. Then we have
e′ ∈ Rad(0) or e′′ ∈ Rad(0), since e is primitive. But Rad(0) consists only of nilpotent
elements. Therefore e′ or e′′ has to be zero.

Let us apply this algorithm to an example.

Example 5.2. Consider the finite Z-algebra R generated by G = {1, g1, . . . , g5} with relation
ideal ⟨6, 3g1, 3g2, 3g3⟩. The non-trivial structure constants are given by g24 = g5, g

2
5 = g4

and g4g5 = 1. We have Rad(0) = ⟨6, 2g5 − 2, g2 + 2, g2 − g3⟩, and the residue class of
e = g4 + g5 + 1 in R/Rad(0) is a primitive idempotent. We apply Algorithm 5.1 to lift e to
an idempotent of R.
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(1) We set h = e.
(2) We compute r = h2 − h = 2g4 + 2g5 + 2 and f = h+ r − 2hr = −3g4 − 3g5 − 3.
(3) Using the structure constants, we calculate f2 − f = 30g4 + 30g5 + 30.
(4) Since (30, 0, 0, 0, 30, 30) ∈ SyzZ(G), we return the primitive idempotent f .

The number of iterations in Algorithm 5.1 necessary to lift the idempotents can be
bounded as follows.

Proposition 5.3. Let R be a finite Z-algebra of rank r, and let T be the torsion subgroup
of R+.

(a) We have Rad(0)m = {0} for m = r + lengthZ(T ).
(b) Let pe11 , . . . , p

es
s be the elementary divisors of R. Then Algorithm 5.1 terminates after at

most ⌈log2(r + e1 + · · ·+ es)⌉ steps.

Proof. To prove (a), note that an element f ∈ Rad(0) yields a nilpotent Z-linear endomor-
phism φ of R given by multiplication with f . One therefore obtains a chain

Ker(φ) ⊊ Ker(φ2) ⊊ · · · ⊊ R.

Now we show that if rank(Ker(φi)) > 0, then rank(Ker(φi)) < rank(Ker(φi+1)). Note that
rank(Ker(φi)) = rank(Ker(φi+1)) if and only if Ker(φi+1)/Ker(φi) is a torsion module.
Let Ker(φi+1)/Ker(φi) be a torsion module. We prove by induction that this implies
Ker(φi+k+1)/Ker(φi+k) is a torsion module for all k ∈ N. For k = 0 the claim is true
by assumption. Now assume that Ker(φi+k)/Ker(φi+k−1) is a torsion module, and let
x ∈ Ker(φi+k+1). Then we have φ(x) ∈ Ker(φi+k), and there exists a non-zero c ∈ Z with
cφ(x) ∈ Ker(φi+k−1). Hence we obtain cx ∈ Ker(φi+k).

Thus we conclude that Ker(φr) has rank r, and therefore that φr(R) is a submodule

of T . This forces φr+lengthZ(T ) = 0.
Part (b) follows immediately from (a), since the length of the torsion is given by the

number of elementary divisors peii counted with multiplicity ei.

In order to compute the primitive idempotents of R = P/I, we can now use Algorithm 5.1
to lift the idempotents of R/Rad(0). For the task of finding the primitive idempotents
of R/Rad(0), we consider the minimal associated primes of I. Let us recall the following
remark from [20].

Remark 5.4. Let T be a commutative, unitary, noetherian ring.

(a) Given an idempotent e ∈ T , the set V(1− e) is both open and closed in Spec(T ).
(b) If U ⊆ Spec(T ) is a subset which is both open and closed, there exists a unique

idempotent e ∈ T such that in Tp/pTp we have ē = 1 for p ∈ U and ē = 0 otherwise.
(c) The correspondence given in (a) and (b) is 1-1. The primitive idempotents correspond

uniquely to the connected components of Spec(T ).

Therefore, in order to compute the primitive idempotents of R/Rad(0), we need to
calculate the connected components of Spec(R/Rad(0)). Since the ring R/Rad(0) might
have infinitely many prime ideals, we use the following approach to describe the connected
components of Spec(R/Rad(0)).

Definition 5.5. Let R be a finite Z-algebra, and let minPrimes(R) be the set of minimal
associated prime ideals of R. A maximal subset of minPrimes(R) such that all corresponding
prime ideals are part of the same connected component of Spec(R) is called a connected
component of minPrimes(R).
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Since R is a finite Z-algebra, the associated primes of R are either of height n and do
not contain a non-zero integer, or they are of height n+ 1 and hence maximal ideals. Now
Algorithm 5.6 determines the connected components of minPrimes(R).

Algorithm 5.6. (Computing the Connected Components of minPrimes(R))
Let R be an explicitly given finite Z-algebra. Consider the following sequence of instructions.

(1) Compute the set of minimal associated prime ideals of R. Let m1, . . . ,mℓ be the minimal
associated prime ideals of height n + 1, and let p1, . . . , pm be the minimal associated
primes ideals of height n.

(2) Let M = {{p1}, . . . , {pm}}.
(3) While there are sets C,C ′ ∈M such that there exist pi ∈ C and pj ∈ C ′ with pi+pj ̸= ⟨1⟩

replace C and C ′ in M by C ∪ C ′.
(4) For every ideal mi, append the set {mi} to M .
(5) Return M .

This is an algorithm which computes a set M = {C1, . . . , Cν} such that C1, . . . , Cν are the
connected components of minPrimes(R). It is in ZPPIF.

Proof. The following observations show the correctness of this algorithm. An associated
prime ideal of height n+ 1 is maximal and therefore forms its own connected component.
Two prime ideals pi and pj of height n belong to the same connected component if and only
if there is a maximal ideal m containing both pi and pj , which is equivalent to pi + pj ̸= ⟨1⟩.

Let us now show that the algorithm is in ZPPIF. The associated primes of R can be
computed in ZPPIF using Algorithm 4.2. Then only two types of computations remain.
Namely, we need to decide whether the sum of two primes is equal to ⟨1⟩ and whether one
prime ideal is contained in another. Both of these tasks can be achieved in polynomial time
by Proposition 2.9.

A more general version of this algorithm which computes the connected components of
a set of (non-minimal) associated prime ideals is given in Section 4 of [20].

Example 5.7. Consider the finite Z-algebra R given by the explicit presentation R =
Z[x, y]/I with I = ⟨x2 + 5x, xy, y2 − y, 6y⟩. We follow the above algorithm and compute
the connected components of minPrimes(R).

(1) Algorithm 4.2 yields the minimal associated primes m1 = ⟨x̄, ȳ−1, 3⟩ and m2 = ⟨x̄, ȳ+1, 2⟩
of height 3, as well as and the minimal associated primes p1 = ⟨x̄, ȳ⟩ and p2 = ⟨ȳ, x̄+ 5⟩
of height 2.

(2) We let M = {{p1}, {p2}}.
(3) Since p1 + p2 = ⟨x̄, ȳ, 5⟩ ≠ ⟨1⟩, we replace {p1} and {p2} by {p1 + p2} and obtain

M = {{p1 + p2}}.
(4) We add {m1} and {m2} to M .
(5) Thus the connected components of minPrimes(R) are {{m1}, {m2}, {p1, p2}}.

From the connected components of minPrimes(R) we can now derive the primitive
idempotents of R.

Algorithm 5.8. (Computing the Primitive Idempotents)
Let R be an explicitly given finite Z-algebra. The following steps define an algorithm which
computes the primitive idempotents of R in ZPPIF.

(1) Compute the connected components C1, . . . , Cν of minPrimes(R) using Alg. 5.6.
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(2) Compute J =
⋂

p∈minPrimes(R) p.

(3) For i = 1, . . . , ν, compute Ji =
⋂

p∈Ci
p.

(4) Compute the preimages q1, . . . , qν of e1, . . . , eν under the canonical Z-linear map R/J →
R/J1 × · · · ×R/Jν .

(5) Using Algorithm 5.1, lift the idempotents q1, . . . , qν of R/J to idempotents of R and
return them.

Proof. For a proof of the correctness of this algorithm, we again refer to Section 4 of [20].
Let us analyze the complexity of this algorithm. Step (1) can be performed in ZPPIF
using Algorithm 5.6. The remaining steps can performed in polynomial time by Proposi-
tion 2.9, Algorithm 2.10, and Algorithm 5.1. The number of iterations necessary to perform
Algorithm 5.1 has a polynomial bound by Proposition 5.3.

Example 5.9. Let us continue Example 5.7 and compute the primitive idempotents of the
finite Z-algebra Z[x, y]/I with I =

〈
x2 + 5x, xy, y2 − y, 6y

〉
.

(1) Using Algorithm 5.6, we already computed the connected components {m1}, {m2}, and
{p1, p2}} of minPrimes(R) in Example 5.7.

(2) Using Proposition 2.9.e, we calculate J = p1 ∩ p2 ∩m1 ∩m2 = I.
(3) Using Proposition 2.9.e, we compute p1 ∩ p2 =

〈
ȳ, x̄2 + 5x̄

〉
.

(4) We apply Algorithm 2.10 to the Z-linear map R/I → R/(p1 ∩ p2)×R/m1 ×R/m2 and
obtain the preimages ȳ + 1, 3ȳ, −2ȳ of e1, e2, e3.

(5) Since I = J , we do not need to lift the idempotents. Thus we return the primitive
idempotents ȳ + 1, 3ȳ, −2ȳ of R.

6. Explicit Z-Algebra Presentations and Strong Gröbner Bases

In the previous sections we made the assumption that a Z-algebra is explicitly given,
i.e., given by Z-module generators, their linear relations, and structure constants. This
information can be encoded in an ideal I ⊆ P = Z[x1, . . . , xn] such that R = P/I. More
precisely, let

I = ⟨xixj −
n∑

k=0

cijkxk,
n∑

k=0

aℓkgk | i, j = 1, . . . , n, ℓ = 1, . . . ,m⟩ (∗)

be the ideal in P = Z[x1, . . . , xn] encoding the information of an explicitly given Z-algebra
R = P/I as in Remark 2.1.

In this section we show that this representation of R is polynomial time equivalent to
computing a strong Gröbner basis of I. This notion is defined as follows.

Definition 6.1. Let I be an ideal in P = Z[x1, . . . , xn], and let σ be a term ordering on Tn.
A set of polynomials G = {g1, . . . , gr} in I is called a strong σ-Gröbner basis of I if, for
every polynomial f ∈ I \ {0}, there exists an index i ∈ {1, . . . , r} such that LMσ(f) is a
multiple of LMσ(gi).

In the first subsection we show that a presentation R = P/I with I as above allows us
to compute a strong Gröbner basis of I in polynomial time. In the second subsection we
prove that, conversely, if R = P/I and we know a strong Gröbner basis of I, then we can
calculate a presentation as in Remark 2.1 in polynomial time.
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6.1. Computing a Strong Gröbner Basis of an Explicitly Given Z-Algebra. Let
us begin with the task of computing a strong Gröbner basis for an ideal I as above. More
generally, consider the following situation. Let P = Z[x1, . . . , xn], and let I1, . . . , Is ⊆ P
be ideals such that P/Ij is a finite Z-algebra for j = 1, . . . , s. Our goal is to compute
a strong Gröbner basis of their intersection I1 ∩ · · · ∩ Is. For 0-dimensional ideals in a
polynomial ring over a field, an intersection like this can be computed using the generalized
Buchberger-Möller algorithm (see [1]). In the following we extend this algorithm to ideals in
Z[x1, . . . , xn].

Before formulating this generalization, we need to address the task of representing the
residue classes in P/Ij using suitable systems of generators.

Remark 6.2. Let I be an ideal in P such that P/I is a finite Z-algebra, and let π : P −→ P/I
be the canonical epimorphism. We need to be able to express the image π(f) of an element
f ∈ P as a linear combination of some system of Z-module generators of P/I.

Let (t1, . . . , tµ) be a tuple of terms such that O = (t1, . . . , tµ) generates P/I as a
Z-module. Then a tuple (a1, . . . , aµ) ∈ Zµ such that π(f) = ait1 + · · · + aµtµ is called a
representation vector of f with respect to O. Representation vectors are in general not
unique, but can be calculated efficiently in several settings.

(a) If I is given as in (∗) and f ∈ P , we can replace products xixj in f repeatedly by linear

combinations
n∑

k=0

cijkxk until the resulting polynomial g is linear. Then π(f) = π(g) is a

Z-linear combination of the residue classes of the terms in {1, x1, . . . , xn}.
(b) If I is given by a strong Gröbner basis with respect to a term ordering σ, we can use

Oσ(I) = Tn \ L, where L = {m ∈ LMσ(I) | LCσ(m) = 1}, and represent π(f) for an
element f ∈ P by the residue class of its normal form NFσ,I(f) which is a Z-linear
combination of the terms in Oσ(I).

In either case, if we have an implementation of a function that represents π(f) for every
polynomial f ∈ P in the form π(f) = a1t1 + · · ·+ aµtµ then we write RVO(f) = (a1, . . . , aµ)
for the corresponding representation vector.

Now we can formulate the generalized Buchberger-Möller algorithm for ideals in P =
Z[x1, . . . , xn].
Algorithm 6.3. (Intersecting Ideals in Z[x1, . . . , xn])
For i = 1, . . . , s, let I1, . . . , Is be ideals in P such that P/Ii is a finite Z-algebra, and let
Oi = {ti1, . . . , tiµi} ⊆ Tn be a set of µi terms such that their residue classes generate P/Ii
as a Z-module. Furthermore, we assume that a Z-submodule Ui of Zµi is given such that
the Z-linear map P/Ii −→ Zµi/Ui defined by tij 7→ ei is an isomorphism. Finally, let σ be a
degree compatible term ordering on Tn. Consider the following instructions.

(1) Start with empty lists G = [ ], O = [ ], M = [ ], and a list L = [1].
(2) Let N = {n1, . . . , nk} ⊆ Zµ such that Zµ1/U1 ⊕ · · · ⊕ Zµs/Us

∼= Zµ/⟨N⟩ for some µ ≥ 1.
(3) If L is empty, return the pair [G,O] and stop. Otherwise, choose the power product

t = minσ(L) and remove it from L.
(4) Compute the vector v = RVO1(t)⊕ · · · ⊕ RVOs(t) ∈ Zµ.
(5) Let m1, . . . ,mℓ be the elements of M . Compute a Z-basis B in Hermite normal form of

the set of solutions of the homogeneous linear equation

vx0 −
ℓ∑

i=1
mixi −

k+ℓ∑
i=ℓ+1

nixi = 0
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in the indeterminates x0, . . . , xk+ℓ.
(6) If it exists, let (ai) ∈ Zk+ℓ+1 be a basis element in B with a0 ̸= 0. Append the polynomial

a0t−
∑ℓ

i=1 aiti to the list G, where ti is the i-th power product in the list O.
(7) If there exists no such solution or if the first component a0 of every solution is different

from 1, append the vector v to M and the term t to the list O. Add to L those elements
of {x1t, . . . , xnt} which are neither multiples of an element of L nor of an element of
{LMσ(g) | g ∈ G}.

(8) Continue with step (3).

This is an algorithm which computes a pair (G,O) such that G is a reduced strong σ-Gröbner
basis of I =

⋂s
i=1 Is and the residue classes of the elements in O generate the Z-module P/I.

Proof. First we prove correctness using induction on the iterations of the algorithm. More
precisely, we show that if the values of G and O are correct at the start of an iteration then
they are still correct at the end of the iteration.

If L is not empty then it contains a minimal element t with respect to σ. So, at the
start of each iteration we have that the list G contains polynomials that can be extended to
a minimal strong Gröbner basis of the intersection and whose leading terms are σ-smaller
than t. Consider the case t >σ 1. If (ai) ∈ Zk+ℓ+1 is the solution of the linear system in

step (5) then a0v −
∑ℓ

i=1 aimi ∈ ⟨N⟩, and hence f = a0t−
∑ℓ

i=1 aiti ∈ I1 ∩ · · · ∩ Is. Since
the solution space is in Hermite normal form, every other polynomial h in the intersection
with LTσ(h) = t has to satisfy a0t | LMσ(h), and f cannot be reduced further using the
elements in G. This means that a reduced strong Gröbner basis of the intersection has to
contain f , and f is added to G in step (6).

If there exists no solution with non-zero first component, or the first component of all
solutions is different from 1, there is no element g in G such that LMσ(g) | t. Hence the
term t has to be added to O.

Finally, the list L is updated such that its σ-smallest element is always the σ-smallest
term greater than t and not divisible by the leading monomial of some element of G. Since
P/(I1 ∩ · · · ∩ Is) is a finite Z-module, there exists for every i ∈ {1, . . . , n} a number αi ≥ 1
such that xαi

i ∈ LTσ(I1 ∩ · · · ∩ Is). Hence only a finite number of terms can be added to the
list L. This proves that the procedure terminates.

Let us apply this algorithm to an example.

Example 6.4. Let σ = DegRevLex, and consider the ideals I = ⟨2x − y, x2, y2, xy⟩ and
J = ⟨x2, y2, 2⟩ in P = Z[x, y]. We have

OI = Tn \ ⟨x2, y2, xy⟩ = {1, y, x} and OJ = Tn \ ⟨x2, y2⟩ = {1, y, x, xy}.
The following table shows how Algorithm 6.3 can be applied to compute a strong σ-Gröbner
basis of I∩J . The first five rows of this table correspond to the elements of N . The algorithm
considers the terms 1, y, x, y2, xy, x2 in this order. Rows 6–11 in the table correspond to the
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representation vectors computed in step (4) of each iteration.

1 y x 1 y x xy
0 −1 2 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2

1 1 0 0 1 0 0 0 → G = [ ]
y 0 1 0 0 1 0 0 → G = [ ]
x 0 0 1 0 0 1 0 → G = [4x− 2y]
y2 0 0 0 0 0 0 0 → G = [4x− 2y, y2]
xy 0 0 0 0 0 0 1 → G = [4x− 2y, y2, 2xy]
x2 0 0 0 0 0 0 0 → G = [4x− 2y, y2, 2xy, x2]

For instance, let us examine the 5-th iteration, where the algorithm handles the term xy.
In step (5) of this iteration we solve the homogeneous linear system of equations given by
rows 1–8 and row 10 of the table. This is because in the 4-th iteration we did not add the
representation vector to the set M . The Hermite normal form of a basis of the solution
space is given by [

2 0 0 0 0 0 0 0 −1
0 4 −2 0 −2 0 1 −2 0

]
.

Hence we append the element 2xy to G. Altogether, we obtain the strong σ-Gröbner basis
{4x− 2y, y2, 2xy, x2} of I ∩ J .

If the Z-algebras P/Ii determined by the ideals Ii are given as in Remark 2.1, then it is
not necessary to compute their strong Gröbner bases separately, as the following corollary
shows.

Corollary 6.5. (Computing a Strong Gröbner Basis)
Suppose that a finite Z-algebra R is explicitly given as in Remark 2.1, and let I be the
ideal in P such that R = P/I and I is of the form described in (∗). Let σ be a degree
compatible term ordering on Tn. Then Algorithm 6.3 computes a strong σ-Gröbner basis
of I in polynomial time.

Proof. As mentioned in Remark 6.2.a, the representation vector in step (4) of an element
f ∈ P can be obtained by simplifying every product of indeterminates using the structure
constants. The linear equation in step (6) can be solved in polynomial time by Remark 2.4.
The claim then follows from the fact that the number of iterations is bounded by the number
of generators of R.

6.2. Computing an Explicit Representation. Now let I ⊆ P be an ideal such that
R = P/I is a finite Z-algebra. Given a strong Gröbner basis of I with respect to some term
ordering σ, our goal is to compute a representation of R as in Remark 2.1. The first step is
to find a suitable system of Z-module generators of R.

Proposition 6.6. (Macaulay’s Basis Theorem for Finite Z-Algebras)
Let I ⊆ P be an ideal such that P/I is a finite Z-algebra, let σ be a term ordering on Tn,
and let L = {m ∈ LMσ(I) | LCσ(m) = 1} be the set of all monic leading monomials of I.
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Then the residue classes of the terms in Oσ = Tn \ L form a generating set of the Z-module
P/I.

Proof. It suffices to show that the Z-submodule Q =
∑

t∈Oσ
Z(t+ I) =

∑
t∈Oσ

Zt+ I of P is
equal to P . Suppose that Q ⊊ P , and let f ∈ P \Q be a polynomial with minimal leading
term. Then LTσ(f) ∈ O would imply f − LCσ(f) LTσ(f) ∈ P \Q which would contradict
the minimality of f . Hence we have LTσ(f) ∈ L. This means there exist a polynomial g ∈ I
and a term t ∈ Tn such that LCσ(g) = 1 and LTσ(f) = tLTσ(g). But then f − LCσ(f)tg
has smaller leading term, again contradicting the minimality of f .

The set Oσ in this proposition can be determined from a strong Gröbner basis of I.
Having obtained a tuple of Z-module generators of P/I, it remains to determine its relation
module.

For every polynomial f ∈ P , the Division Algorithm with respect to a σ-Gröbner basis
of I yields its normal form NFσ,I(f) =

∑µ
i=1 aiti with ai ∈ Z and ti ∈ Tn. The canonical

epimorphism π : P −→ P/I satisfies π(f) =
∑µ

i=1 aiti. Moreover, for a given generating set
of P/I, we have a canonical surjective map φ : P/I −→ Zµ. Combining this map with π,
we obtain a Z-linear surjective map RVOσ : P −→ Zµ which sends f to (a1, . . . , aµ).

Given a strong Gröbner basis of the ideal I, we can now compute the kernel of the
map φ as follows.

Algorithm 6.7. (Computing a Module Presentation)
Let I be an ideal in P , let σ be a term ordering on Tn, let G be a minimal strong σ-Gröbner
basis of I, and let {t1, . . . , tk} = Tn \ L, where L equals {m ∈ LMσ(I) | LCσ(m) = 1} as in
Proposition 6.6. Consider the following instructions.

(1) Start with an empty list U = [ ] and O = [t1, . . . , tk].
(2) If O is empty, return the list U and stop. Otherwise, choose a term t in O and remove

it from O.
(3) Find the smallest integer ℓ > 1 such that ℓ s ∈ LMσ(G) for some s ∈ Tn with s | t. If no

such integer exists, continue with step (2).
(4) Let c ∈ Zk be the coefficient vector representing ℓ t, and let d ∈ Zk be the coefficient

vector representing NFσ,I(ℓ t) with respect to (t1, . . . , tk). Append c−d to U and continue
with step (2).

This is an algorithm which computes a list of tuples U ⊆ Zk such that we have P/I ∼= Zk/⟨U⟩.

Proof. By Proposition 6.6, the residue classes of the terms t1, . . . , tk generate the Z-
module P/I. Assume that t1 >σ t2 >σ · · · >σ tk, and consider the Z-module homomorphism

φ : Zk −→ P/I given by (c1, . . . , ck) 7→ c1t1 + · · ·+ cktk.

Clearly, we have Ker(φ) ⊇ ⟨U⟩. Assume that the converse containment does not hold.
Then there exists a tuple c = (c1, . . . , ck) ∈ Ker(φ) such that f = c1t1 + · · ·+ cktk ∈ I and
c /∈ U . Choose c with this property such that LTσ(f) is minimal. Since f ∈ I, there exists a
polynomial g ∈ G with LMσ(g) | LMσ(f) = citi.

Notice that this implies LCσ(g) > 1. Otherwise, the term ti would be divisible by LTσ(g),
and this would imply ti ∈ L, a contradiction.

Consequently, there is an element d = (d1, . . . , dk) ∈ U with d1 = · · · = di−1 = 0 and
ℓdi = ci for some ℓ ∈ Z. The tuple c− ℓd corresponds to a polynomial whose leading term
is smaller than LTσ(f). This shows c− ℓd ∈ U , but then we get c ∈ U in contradiction to
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our assumption. Hence we have the equality Ker(φ) = ⟨U⟩ and φ induces the inverse of the
desired isomorphism.

Given a strong Gröbner basis of an ideal I as above, an explicit representation of P/I
can now be obtained as follows.

Corollary 6.8. (Computing an Explicit Representation)
Let I be an ideal in P such that P/I is a finite Z-algebra, let σ be a term ordering on Tn,
and let G be a minimal strong σ-Gröbner basis of I. Consider the following instructions.

(1) Compute the set {t1, . . . , tk} = Tn \L, where the set L equals {m ∈ LMσ(I) | LCσ(m) =
1}.

(2) Apply Algorithm 6.7 to compute generators of a submodule V ⊆ Zk such that P/I ∼=
Zk/V .

(3) For i, j = 1, . . . , k, use the Division Algorithm with respect to G to compute the normal

form NFσ,I(titj) =
∑k

ℓ=1 cijℓtℓ with cijℓ ∈ Z.
(4) Return the residue classes of t1, . . . , tk in P/I, the generators of V , and the coefficients

cijℓ for i, j, ℓ = 1, . . . , k.

This is an algorithm which computes an explicit representation of P/I in polynomial time in
the bit complexity of the input G.

Proof. The residue classes of t1, . . . , tk generate P/I as a Z-module by Proposition 6.6.
Algorithm 6.7 then correctly computes V such that P/I ∼= Zk/V . Finally, we check that
NFσ,I(titj) is of the form given in step (4). Let s be a term not contained in {t1, . . . , tk}.
Suppose that NFσ,I(titj) contains a monomial ds with d ∈ Z. Then we have ds /∈ LMσ(I),
and in particular s /∈ L, a contradiction. The time complexity of each step is clearly
polynomial.

In conclusion, we can see that an explicit representation of a finite Z-algebra R as in
Remark 2.1 is equivalent to knowing a strong Gröbner basis of an ideal I in P = Z[x1, . . . , xn]
such that R = P/I. Traditionally, many of the algorithms presented in this paper were
executed using the calculation of a strong Gröbner basis. However, as there is no polynomial
time bound for a suitable version of Buchberger’s Algorithm, the complexity bounds shown
here would be impossible if R were only given via R = P/I. As explicit representations of
the type described in Remark 2.1 occur in many contexts (see for instance [20]), we hope
that the algorithms and complexity bounds developed here may prove useful.
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