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Abstract. The isomorphism problem for infinite finitely presented groups is probably the
hardest among standard algorithmic problems in group theory. Classes of groups where it
has been completely solved are nilpotent groups, hyperbolic groups, and limit groups. In
this short paper, we address the problem of isomorphism to particular groups, including
free groups. We also address the algorithmic problem of embedding a finitely presented
group in a given limit group.

In memory of Ben Fine

1. Introduction

The isomorphism problem has been completely solved in the class of finitely generated
nilpotent groups in [8].

Later, it was solved in the class of hyperbolic groups [15] (torsion-free case), [5] (general
case), although it is difficult (if at all possible) to “computerize” these algorithms, i.e., to
code them in one of the known programming languages.

Then, the isomorphism problem was also solved in the class of limit groups (a.k.a. fully
residually free groups) [4].

In the class of finitely generated one-relator groups, although the isomorphism problem
is still open in general, it has been settled for “most” one-relator groups (in a precise formal
sense) in [9]. More specifically, for any r ≥ 2, there is a subset G of elements of the free
group Fr such that: (1) G has asymptotic density 1 in Fr; (2) it is algorithmically possible
to find out whether or not a given element u ∈ Fr is in G; (3) for any two elements u, v ∈ G,
it is algorithmically possible to find out whether or not two one-relator groups (with the
relators u and v, respectively) are isomorphic.

The “next in line” class of groups where the isomorphism problem may be solvable
is the class of finitely presented metabelian groups (see [3], Problem (M1)), where “most”
algorithmic problems have solutions by now [2].

We note that the isomorphism problem has a reasonable chance to be solvable only in
classes of groups where all groups have solvable word problem. This rules out, for example,
the class of finitely presented solvable groups of derived length ≥ 3 since this class has
groups with unsolvable word problem [10].
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In this paper, we address an apparently easier problem of isomorphism to a particular
group. Using a simple trick, we establish here the following result that appears to be useful
in some situations.

Proposition 1. Let G be a group with n given generators. Suppose that G has solvable
word problem. Let H be a finitely presented group, and suppose either G or H is Hopfian.
If one can decide whether or not there is an epimorphism from G onto H and find it as an
explicit map on the generators in case it exists, then one can decide whether or not G is
isomorphic to H.

Recall that a group is Hopfian if any onto endomorphism of this group is also one-to-one,
i.e., is an automorphism. Note that in Proposition 1 we do not require that H has solvable
word problem or that G is finitely presented.

Our main goal actually was to address the problem of isomorphism to the (absolutely)
free group Fn of rank n. There is a classical result of Adyan [1] saying that given an arbitrary
(finitely presented) group B, there is no algorithm that would decide, given any (finitely
presented) group G, whether or not G is isomorphic to B. However, if we require solvability
of the word problem in G, then the problem of isomorphism of G to the free group Fn

becomes algorithmically solvable:

Theorem 1. Let G be a finitely presented group with a given algorithm for solving the word
problem in G. Then, for any given n ≥ 1, it is algorithmically possible to find out whether
or not G is isomorphic to a free group of rank n.

There is a “detour” that leads to this result, see [7, Corollary 4.3] for an explicit mention
of this result. Specifically, there is an algorithm that, given a finitely presented group G
with solvable word problem, decides whether or not G is a limit group [6]. If not, then G
cannot be isomorphic to a free group because any finitely generated free group is a limit
group. If G is a limit group, then one can use an algorithm, due to [4], that decides if there
is an isomorphism between two limit groups.

Our proof is more straightforward, but it still uses a “big gun”, namely Razborov’s work
on solving (systems of) equations in a free group.

It appears that solvability of equations in groups should inevitably be an important
ingredient in any solution of the isomorphism problem for infinite groups. However, this is
typically not enough. In our proof of Theorem 1, we actually establish an isomorphism (or
non-isomorphism) of the group G to a subgroup of a given fixed finitely generated free group,
and then we use the fact that every nontrivial subgroup of a free group is itself free. This
is not the case with hyperbolic groups, say; moreover, a finitely generated subgroup of a
hyperbolic group may not even be finitely presented, and this makes our method inapplicable
in that situation. One class of groups where our method does work is the class of limit
groups since every finitely generated subgroup of a limit group is a finitely presented limit
group. Also, finitely generated limit groups are Hopfian because they are residually free and
therefore residually finite. The following result may be of interest:

Theorem 2. Let G be a finitely presented group with a given algorithm for solving the word
problem in G. Let H be a limit group. Then it is algorithmically possible to find out whether
or not G can be embedded in H.
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2. Proof of Proposition 1

Let g1, . . . , gn be the given generators of the group G, and h1, . . . , hn generators of the group
H. Needless to say, if there is no epimorphism from G onto H, then G and H are not
isomorphic.

Now suppose the map φ : gi → hi can be extended to an epimorphism from G onto H.
Then run two algorithms in parallel:

1. Algorithm A will detect non-isomorphism by looking for an element in the kernel of φ.
To that effect, it goes over nontrivial elements of G one at a time (this is possible since the
word problem in G is solvable) and checks if φ takes them to the trivial element of H.

Here the reader may say: wait, you do not require that the word problem in H is solvable.
Indeed, but here we only need the “yes” part of the word problem (i.e., detecting that the
element is trivial), and this part works in any recursively presented group. Specifically, to
detect that w = 1 one can go over all finite products of conjugates of defining relators and
(graphically) compare them to w.

We note that if the kernel of φ is nontrivial, then H is isomorphic to a proper factor
group of G and therefore cannot be isomorphic to G since we assumed that either G or H
was Hopfian.

2. Algorithm B will detect isomorphism by looking for a map ψ, given on the generators hi
of H, such that ψ(φ(gi)) = gi for all generators gi of the group G. To that effect, B will go
over n-tuples (y1, . . . , yn) of elements of G, one at a time, and define ψ by ψ(hi) = yi.

First check if ψ is a homomorphism by computing ψ(rj) for every defining relator rj of
the group H and checking if ψ(rj) = 1. This is possible since G has solvable word problem,
although we do not really need this because again, here we only need the “yes” part of the
word problem.

If ψ is a homomorphism, then just check if ψ(φ(gi)) = gi for all gi, again using the “yes”
part of the word problem in G. If H is isomorphic to G, then eventually a map ψ like that
will be found.

Eventually one of the algorithms, A or B, will stop and give an answer. 2
We note that the only place in the proof where we used solvability of the word problem

in G was where we were trying to detect non-isomorphism by looking for a nontrivial element
in the kernel of φ.

3. Proof of Theorem 1

Let G have m generators. First we note that if n > m, then G cannot be isomorphic to a
free group of rank n, so we assume that n ≤ m from now on.

Let g1, . . . , gm be the given generators of the group G, and let r1, . . . , rs be all defining
relators of G. Let Fn be a free group of rank n, and let α : gi → xi for some xi ∈ Fn,
i = 1, . . . ,m. This map extends to a homomorphism α : G→ Fn if and only if α(rj) = 1 for
all j = 1, . . . , s. This translates into a system of s equations in the group Fn.

First, we will run Razborov’s algorithm R [14] to see if this system of equations has
a solution tuple (a1, . . . , am) that generates a free subgroup of rank r ≥ n in Fn; in other
words, if there is an epimorphism of G onto a free group of rank r ≥ n. Denote this free
group by Hr (recall that every nontrivial subgroup of a free group is free). If the system has
no such solutions, then G is not isomorphic to a free group of rank n.
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If there is an epimorphism of G onto a free group Hr, then there is also an epimorphism
of G onto a free subgroup Kn ≤ Hr of rank n ≤ r. To find an explicit epimorphism of G
onto Kn (as a map on the generators), one can first select generators of Kn and then find
an explicit epimorphism of Hr onto Kn by using, say, Nielsen’s method, see e.g. [13].

After one finds an epimorphism of G onto Kn, Proposition 1 applies (since any finitely
generated free group is Hopfian), and this completes the proof. 2

We note that Razborov’s results [14] were crucial for this proof. We also note that we
used not only an algorithm for solving systems of equations in a free group, but also the
fact (due to [14] as well) that it is algorithmically possible to find a subgroup of Fn of the
maximum rank generated by a solution tuple of the given system of equations.

4. Proof of Theorem 2

For the most part, the proof is similar to that of Theorem 1. Again, let g1, . . . , gm be
the given generators of the group G, and Let r1, . . . , rs be all defining relators of G. Let
α : gi → xi for some xi ∈ H. This map extends to a homomorphism α : G→ H if and only
if α(ri) = 1 for all i = 1, . . . , s. This translates into a system of s equations in the group H.

There are known algorithms for solving systems of equations in limit groups (see e.g.
[11]). Moreover, the results of [11] imply that in a limit group H, different m-tuples of
solutions of a system of equations generate only finitely many subgroups Hi of the group H
up to isomorphism, and a (finite) presentation of each subgroup Hi can be algorithmically
computed according to [12, Theorem 30].

We will therefore run an algorithm from [11] to solve the system of equations mentioned
in the first paragraph of this section. Then we find generating m-tuples (hi1, . . . , him) of
subgroups Hi. Then, using an algorithm from [11], we find (finitely many) defining relations
for each subgroup Hi representing an isomorphism class mentioned in the previous paragraph.

Thus, if G can be embedded in H, it should be isomorphic to one of the subgroups Hi.
Suppose there are k of them. We will then run k algorithms Ci in parallel, where each Ci, in
turn, is a pair of algorithms (Ai,Bi) running in parallel.

As in the proof of Proposition 1, algorithm Ai will detect non-isomorphism by looking
for a nontrivial element in the kernel of φ : gj → hij . If the kernel is nontrivial, then the
subgroup Hi is isomorphic to a proper factor group of the group G and therefore cannot be
isomorphic to G itself because all finitely generated subgroups of a limit group are Hopfian.

At the same time, algorithm Bi will detect isomorphism of the subgroup Hi to the group
G by looking for a map ψ, given on the generators hij of Hi, such that ψ(φ(gi)) = gi for all
generators gi of the group G. This is done the same way as in the proof of Proposition 1,
but there is one more ingredient needed here. To check if ψ is a homomorphism, we see if ψ
takes each defining relation of Hi to the identity element of G.

Eventually one of the algorithms, Ai or Bi, will stop and give an answer about isomor-
phism (or non-isomorphism) of Hi to G.

Acknowledgement. I am grateful to Olga Kharlampovich and Alexei Myasnikov for useful
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