
journal of Groups, Complexity, Cryptology
Volume 15, Issue 2, 2023, pp. 1:1–1:22
https://gcc.episciences.org/

Submitted Nov. 3, 2023
Published Mar. 31, 2024

CAYLEY LINEAR–TIME COMPUTABLE GROUPS

PROHRAK KRUENGTHOMYA AND DMITRY BERDINSKY

Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
e-mail address: prohrakju@gmail.com

Department of Mathematics, Faculty of Science, Mahidol University and Centre of Excellence in
Mathematics, Commission on Higher Education, Bangkok, 10400, Thailand
e-mail address: berdinsky@gmail.com

Abstract. This paper looks at the class of groups admitting normal forms for which the
right multiplication by a group element is computed in linear time on a multi–tape Turing
machine. We show that the groups Z2 ≀ Z2, Z2 ≀ F2 and Thompson’s group F have normal
forms for which the right multiplication by a group element is computed in linear time on
a 2–tape Turing machine. This refines the results previously established by Elder and the
authors that these groups are Cayley polynomial–time computable.

Introduction

Extensions of the notion of an automatic group introduced by Thurston and others [11]
have been studied by different researchers. One of the extensions is the notion of a Cayley
automatic group introduced by Kharlampovich, Khoussainov and Miasnikov [15]. In their
approach a normal form is defined by a bijection between a regular language and a group such
that the right multiplication by a group element is recognized by a two–tape synchronous
automaton. Elder and the authors looked at the further extension of Cayley automatic
groups allowing the language of normal forms to be arbitrary (though it is always recursively
enumerable [2, Theorem 3]) but requiring the right multiplication by a group element to
be computed by an automatic function (a function that can be computed by a two–tape
synchronous automaton). This extension is referred to as Cayley position–faithful (one–tape)
linear–time computable groups [2, Definition 3]. These groups admit quasigeodesic normal
forms (see Definition 1.3) for which the right multiplication by a group element is computed
in linear time (on a position–faithful one–tape Turing machine) and the normal form is
computed in quadratic time [2, Theorem 2].

In this paper we look at the groups admitting normal forms for which the right multi-
plication by a group element is computed in linear time on a multi–tape Turing machine
(we refer to such groups as Cayley linear–time computable). These normal forms are not
necessarily quasigeodesic, see, e.g., the normal form of Z2 ≀ Z2 considered in Section 2.
However, if such normal form is quasigeodesic, then it is computed in quadratic time (see

Key words and phrases: Cayley linear–time computable group, multi–tape Turing machine, wreath product,
Thompson’s group.

Journal of GROUPS,
COMPLEXITY, CRYPTOLOGY DOI:10.46298/jgcc.2023.15.2.12503

© P. Kruengthomya and D. Berdinsky
CC⃝ Creative Commons

https://gcc.episciences.org/
http://creativecommons.org/about/licenses

1:2 P. Kruengthomya and D. Berdinsky Vol. 15:2

Theorem 1.6), thus, fully retaining the basic algorithmic properties of normal forms for
Cayley automatic groups: computability of the right multiplication by a group element
in linear time and normal form in quadratic time. Cayley linear–time computable groups
form a subset of Cayley polynomial–time computable groups introduced in [2, Definition 5],
but clearly include all Cayley position–faithful (one–tape) linear–time computable groups.
We show that the groups Z2 ≀ Z2, Z2 ≀ F2 and Thompson’s group F are Cayley linear–time
computable (on a 2–tape Turing machine) which refines the previous claims that these groups
are Cayley polynomial–time computable [2]. To show that these three groups are Cayley
linear–time computable we use the normal forms previously studied by the second author
and Khoussainov for groups Z2 ≀ Z2 and Z2 ≀ F2 [3] and Elder and Taback for Thompson’s
group F [10]. We note that [3, Theorems 5, 8] and [10, Theorem 3.6] showing that Z2 ≀ F2,
Z2 ≀ Z2 and Thompson’s group F are context–free, indexed and deterministic non–blind
1–counter graph automatic, respectively, do not imply that the right multiplications by a
group element for the normal forms considered in these groups are computed in linear time
on a 2–tape Turing machine. The latter requires careful verification that is done in this
paper.

Several researchers studied extensions of automatic groups utilizing different computa-
tional models. Bridson and Gilman considered an extension of asynchronously automatic
groups using indexed languages [4]. Baumslag, Shapiro and Short extended the notion of an
automatic group based on parallel computations by pushdown automata [1]. Brittenham and
Hermiller introduced autostackable groups which also extends the notion of an automatic
group [5]. Elder and Taback introduced C–graph automatic groups extending Cayley auto-
matic groups and studied them for different classes of languages C [9]. Jain, Khoussainov and
Stephan introduced the class of a semiautomatic groups [13] which generalizes the notion
of a Cayley automatic group. Jain, Moldagaliyev, Stephan and Tran studied extensions of
Cayley automatic groups using transducers and tree automata [14].

The paper is organized as follows. In Section 1 we introduce the notion of a Cayley
k–tape linear–time computable group. In Sections 2, 3 and 4 we show that the wreath
products Z2 ≀Z2, Z2 ≀F2 and Thompson’s group F , respectively, are Cayley 2–tape linear–time
computable. Section 5 concludes the paper.

1. Preliminaries

In this section we introduce the notion of a Cayley linear–time computable group. We start
with defining a basic concept underlying this notion – a function computed on a k–tape
Turing machine in linear time, where k > 1.

Definition 1.1. A (position–faithful) k–tape Turing machine is a Turing machine with k
semi–infinite tapes for each of which the leftmost position contains the special symbol ⊞
which only occurs at this position and cannot be modified. We denote by ⊡ a special blank
symbol, by Σ the input alphabet for which Σ ∩ {⊞,⊡} = ∅ and by Γ the tape alphabet for
which Σ ∪ {⊞,⊡} ⊆ Γ. Initially, for the input x ∈ Σ∗, the configuration of the first tape is
⊞x⊡∞ with the head being at the ⊞ symbol. The configurations of other k − 1 tapes are
⊞⊡∞ with the head pointing at the ⊞ symbol. During the computation the Turing machine
operates as usual, reading and writing symbols from Γ in cells to the right of the ⊞ symbol.

Let k > 1. A function f : Σ∗ → Σ∗ is said to be computed on a k–tape Turing machine
in linear time, if for the input string x ∈ Σ∗ of length n when started with the first tape
content being ⊞x⊡∞ and other tapes content being ⊞⊡∞, the heads pointing at ⊞, the

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:3

Turing machine reaches an accepting state and halts in Cn or fewer steps with the first
tape having prefix ⊞f(x)⊡, where C > 0 is a constant. There is no restriction on the
output beyond the first appearance of ⊡ on the first tape, the content of other tapes and
the positions of their heads.

In Definition 1.1 position–faithfulness refers to a way the output in Σ∗ computed on a
Turing machine is defined: it is the string v ∈ Σ∗ for which the content of the first tape after
a Turing machine halts is ⊞v ⊡ w⊡∞, where w is some string in Γ∗. In general the output
in Σ∗ computed on a Turing machine can be defined as the content of the first tape after
it halts with all symbols in Γ \ Σ removed: see [16] where the output of the computation
on a one–tape Turing machine is defined as the string y ∈ Γ∗ for which the content of the
tape after it halts is ⊞y⊡∞, where y is either empty or the last symbol of y is not ⊡. For
one–tape Turing machines the restrictions to position–faithful ones matters – there exist
functions computed in linear time on a one–tape Turing machine which cannot be computed
in linear time on a position–faithful one–tape Turing machine [8]. The latter is due to the
fact that shifting may require quadratic time. For multi–tape Turing machines (k > 1)
the restriction to position–faithful ones becomes irrelevant as shifting can always be done
in linear time. Recall that a function f : Σ∗ → Σ∗ is called automatic if the language of
convolutions Lf = {u⊗ v |u, v ∈ Σ∗} is regular. Case, Jain, Seah and Stephan showed that
f : Σ∗ → Σ∗ is computed on a position–faithful one–tape Turing machine in linear time if
and only if it is automatic [8]. For k > 1 the class of functions computed on k–tape Turing
machines in linear time is clearly wider than the class of automatic functions.

Now let G be a finitely generated group. Let S = {s1, . . . , sk} ⊂ G be a set of its
semigroup generators. That is, every group element of G can be written as a product of
elements in S. Below we define Cayley linear–time computable groups.

Definition 1.2. Let k > 1. We say that G is Cayley k–tape linear–time computable if there
exist a language L ⊆ Σ∗, a bijective mapping ψ : L → G and functions fs : Σ

∗ → Σ∗, for
s ∈ S, each of which is computed on a k–tape Turing machine in linear time, such that for
every w ∈ L and s ∈ S: ψ(fs(w)) = ψ(w)s. That is, the following diagram commutes:

L L

G G

fs

ψ ψ

rs

,

where rs : G→ G is the right multiplication by s in G: rs(g) = gs for all g ∈ G.

We refer to a bijective mapping ψ : L→ G as a representation. It defines a normal form
of a group G which for every group element g ∈ G assigns a unique string in w ∈ L such
that ψ(w) = g. For the latter we also say that w is a normal form of a group element g. We
will say that a representation ψ : L→ G from Definition 1.2, as well as the corresponding
normal form of G, are k–tape linear–time computable. We note that Definition 1.2 does
not depend on the choice of a set of semigroup generators S – this follows directly from the
observation that a composition of functions computed on k–tape Turing machines in linear
time is also computed on a k–tape Turing machine in linear time. We say that a group is
Cayley linear–time computable if it is Cayley k–tape linear–time computable for some k.

Cayley position–faithful (one–tape) linear–time computable groups were studied in [2].
They comprise wide classes of groups (e.g., all polycyclic groups), but at the same time
retain all basic properties of Cayley automatic groups. Namely, each of such groups admits a

1:4 P. Kruengthomya and D. Berdinsky Vol. 15:2

normal form for which the right multiplication by a fixed group element is computed in linear
time and for a given word g1 . . . gn, gi ∈ S, the normal form of g = g1 . . . gn is computed
in quadratic time. Furthermore, a position–faithful (one–tape) linear–time computable
normal form is always quasigeodesic [2, Theorem 1] (see Definition 1.3 for the notion of a
quasigeodesic normal form introduced by Elder and Taback [9, Definition 4]). Moreover,
this statement can be generalized to Theorem 1.4.

Definition 1.3. A representation ψ : L→ G (a normal form of G) is said to be quasigeodesic
if there exists a constant C > 0 such that for all g ∈ G: |w| ⩽ C(dS(g) + 1), where w is
the normal form of g, |w| is its length and dS(g) is the length of a shortest word g1 . . . gn,
gi ∈ S, for which g = g1 . . . gn in G.

Theorem 1.4. A one–tape o(n log n)–time computable normal form is quasigeodesic.

Proof. Let ψ : L→ G be a bijection between a language L ⊆ Σ∗ and a group G defining a
Cayley one–tape o(n log n)–time computable normal form of G. Let S ⊂ G be a finite set of
semigroup generators. For each s ∈ S there exists a one–tape o(n log n)–time computable
function fs : Σ

∗ → Σ∗ such that ψ(fs(w)) = ψ(w)s for all w ∈ L. For a given s ∈ S we
denote by TMs a one–tape Turing machine computing the function fs in o(n log n) time. For
a given x ∈ Σ∗ we denote by TMs(x) the output of the computation on TMs for the input x:
it is the string y over the tape alphabet of TMs for which the content of the tape after TMs

halts is ⊞y⊡∞, where y is either empty or the last symbol of y is not ⊡ [16]. We denote by
TM′

s a Turing machine which works exactly like TMs, but writes the marked blank symbol

⊡̊ instead of ⊡. Let Σs =
(
Γs ∪ {⊡̊}

)
\ {⊡}, where Γs is the tape alphabet of TMs. Below

we show that the language of convolutions Ls = {x ⊗ z |x ∈ Σ∗ ∧ z = TM′
s(x) ∈ Σ∗

s} is
regular.

We first recall the notion of convolutions of two strings x ∈ Σ∗ and z ∈ Σ∗
s. Let ⋄ be a

padding symbol which does not belong to the alphabet Σ and Σs. The convolution x⊗ z is
the string of length max{|x|, |z|} for which the kth symbol is

(
σ1
σ2

)
, where σ1 is the kth symbol

of x if k ⩽ |x| and ⋄ otherwise and σ2 is the kth symbol of z if k ⩽ |z| and ⋄ otherwise. We
denote by Σ∗ ⊗ Σ∗

s the language of all convolutions Σ∗ ⊗ Σ∗
s = {x ⊗ z |x ∈ Σ∗ ∧ z ∈ Σ∗

s}.
Note that at most one of σ1 and σ2 can be equal to ⋄, but never both. Therefore, Σ∗ ⊗ Σ∗

s

is a language over the alphabet Σ′
s consisting of all symbols

(
σ1
σ2

)
for which σ1 ∈ Σ ∪ {⋄},

σ2 ∈ Σs ∪ {⋄} and σ1 and σ2 cannot be equal to ⋄ simultaneously. Let us describe a Turing
machine TM′′

s recognizing the language Ls. For the sake of convenience we assume that
TM′′

s has two semi–infinite tapes with the heads on each of the two tapes moving only
synchronously.

Algorithm 1.5. Initially, the input string over the alphabet Σ′
s is written on the convolution

of two semi–infinite tapes – the first and the second component for each symbol in Σ′
s

appears on the first and the second tape, respectively. For each of the two tapes the head is
over the first cell.

(1) First TM′′
s scans the input from left to right checking if the input is of the form

x ⊗ z ∈ Σ∗ ⊗ Σ∗
s for some x ∈ Σ∗ and z ∈ Σ∗

s. If it is not, the input is rejected.
Simultaneously, if on one of the tapes TM′′

s reads ⋄, it writes ⊡. After the heads read ⊡
on both tapes detecting the end of the input, they return back to the initial position.

(2) TM′′
s works exactly like TM′

s on the first tape until it halts ignoring the content of the
second tape. Then the heads go back to the initial position.

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:5

(3) After that TM′′
s scans the content of both tapes checking if the heads read the same

symbol. If the heads do not read the same symbol, TM′′
s halts rejecting the input. When

the heads reads ⊡ on both tapes TM′′
s halts accepting the input.

Let n = |x| and m = max{|x|, |z|}. In the first stage of Algorithm 1.5 TM′′
s makes O(m)

moves. In the second stage it makes o(n log n) moves. As the length of TM′
s(x) is at most

o(n log n), in the third stage TM′′
s makes at most o(n log n) moves. Since n ⩽ m we obtain

that TM′′
s makes at most o(m logm) moves before it either accepts or rejects the input

x⊗ z. As the heads of TM′′
s move only synchronously, TM′′

s works exactly like a one–tape
Turing machine recognizing the language Ls in time o(m logm), where m is a length of
the input. Recall that Hartmanis [12, Theorem 2] and, independently, Trachtenbrot [17]
showed that a language recognized by a one–tape Turing machine in o(m logm) time is
regular. Therefore, the language Ls is regular. Now, by the pumping lemma, there exists
a constant Cs > 0 such that |z| ⩽ |x| + Cs for all x ∈ Σ∗, where z = TM′

s(x). We have:
|fs(x)| ⩽ |TMs(x)| ⩽ |TM′

s(x)| for all x ∈ Σ∗. Therefore, |fs(x)| ⩽ |x|+ Cs for all x ∈ Σ∗.
Let C > 0 be some positive constant which is greater than or equal to Cs for every s ∈ S
and |w0|, where ψ(w0) = e. For a given g ∈ G let g1 . . . gk, gi ∈ S, be a shortest word for
which g = g1 . . . gk in G and w be the string for which ψ(w) = g. Clearly, we have that
|w| ⩽ Ck + |w0| ⩽ C(dS(g) + 1) which proves the theorem.

If k > 1, a k–tape linear–time computable normal form is not necessarily quasigeodesic:
in Section 2 we show that the normal form of the wreath product Z2 ≀ Z2 constructed in [3,
Section 5] is 2–tape linear–time computable; but this normal form is not quasigeodesic [3,
Remark 9]. However, if a k–tape linear–time computable normal form is quasigeodesic, then
it satisfies the same basic algorithmic property as a position–faithful (one–tape) linear–time
computable normal form – it is computed in quadratic time [2, Theorem 2]. Indeed, let
ψ : L→ G be a bijection between a language L ⊆ Σ∗ and a group G defining a quasigeodesic
k–tape linear–time computable normal form of G. Let S ⊂ G be a finite set of semigroup
generators.

Theorem 1.6. There is a quadratic–time algorithm which for a given word g1 . . . gn ∈ S∗,
gi ∈ S, computes the normal form of the group element g = g1 . . . gn ∈ G – the string w ∈ L
for which ψ(w) = g.

Proof. Let wi ∈ L be the normal form of the group element g1 . . . gi: ψ(wi) = g1 . . . gi for
i = 1, . . . , n. Let w0 be the normal form of the identity: ψ(w0) = e. For each i = 0, . . . , n−1,
the string wi+1 is computed from wi on a k–tape Turing machine in O(|wi|) time. Since the
normal form is quasigeodesic, |wi| ⩽ C(i+ 1) for all i = 0, . . . , n− 1. So wi+1 is computed
from wi in O(i) time for all i = 0, . . . , n− 1. Now an algorithm computing w from a given
input g1 . . . gn is as follows. Starting from w0 it consecutively computes w1, w2, . . . , wn−1

and wn. The running time for this algorithm is at most O(n2).

As an immediate corollary of Theorem 1.6 we obtain that the word problem for a group
G which admits a quasigeodesic k–tape linear–time computable normal form is decidable in
quadratic time.

2. The Wreath Product Z2 ≀ Z2

In this section we will show that the group Z2 ≀ Z2 is Cayley 2–tape linear–time computable.
Every group element of Z2 ≀Z2 can be written as a pair (f, z), where z ∈ Z2 and f : Z2 → Z2

1:6 P. Kruengthomya and D. Berdinsky Vol. 15:2

Figure 1: An infinite digraph Γ and an element h ∈ Z2 ≀ Z2.

is a function for which f(ξ) is the non–identity element of Z2 for at most finitely many
ξ ∈ Z2. We denote by c the non–identity element of Z2 and by a = (1, 0) and b = (0, 1) the
generators of Z2 = {(x, y) |x, y ∈ Z}. The group Z2 is canonically embedded in Z2 ≀ Z2 by
mapping c to (fc, e), where fc : Z2 → Z2 is a function for which fc(z

′) = e for all z′ ̸= e
and fc(e) = c. The group Z2 is canonically embedded in Z2 ≀ Z2 by mapping z ∈ Z2 to
(fe, z), where fe(z

′) = e for all z′ ∈ Z2. Therefore, we can identify a, b and c with the
corresponding group element (fe, a), (fe, b) and (fc, e) in Z2 ≀ Z2, respectively. The group
Z2 ≀Z2 is generated by a, b and c, so S = {a, a−1, b, b−1, c} is a set of its semigroup generators.
The formulas for the right multiplication in Z2 ≀Z2 by a, a−1, b, b−1 and c are as follows. For
a given g = (f, z) ∈ Z2 ≀ Z2, where z = (x, y), ga = (f, z1) for z1 = (x+ 1, y), ga−1 = (f, z′1)
for z′1 = (x − 1, y), gb = (f, z2) for z2 = (x, y + 1), gb−1 = (f, z′2) for z′2 = (x, y − 1) and
gc = (f ′, z), where f ′(z′) = f(z′) for all z′ ̸= z and f ′(z) = f(z)c.

Normal form. We will use a normal form for elements of Z2 ≀ Z2 described in [3]. Let Γ
be an infinite directed graph shown on Fig. 1 which is isomorphic to (N; S), where S : N → N
is the successor function S(n) = n + 1. The vertices of Γ are identified with elements of
Z2; each vertex of Γ, except (0, 0), has exactly one ingoing and one outgoing edges and the
vertex (0, 0) has one outgoing edge and no ingoing edges. Let t : N → Z2 be a mapping
defined as follows: t(1) = (0, 0) and, for k > 1, t(k) = (x, y) is the end vertex of a directed
path in Γ of length k − 1 which starts at the vertex (0, 0).

We denote by Σ the alphabet Σ = {0, 1, C0, C1}. Let g = (f, z) be an element of the
group Z2 ≀ Z2. We denote by r a number for which t(r) = z. Let m = max{k | f(t(k)) = 1}
and ℓ = max{m, r}. A normal form w ∈ Σ∗ of the group element g is defined to be
a string w = σ1 . . . σℓ of length ℓ for which σk = 0, if f(t(k)) = 0 and k ̸= r, σk = 1
if f(t(k)) = 1 and k ≠ r, σk = C0 if f(t(k)) = 0 and k = r, σk = C1 if f(t(k)) = 1
and k = r. For an illustration consider a group element h ∈ Z2 ≀ Z2 shown on Fig. 1: a
white square indicates that the value of a function f at a given point is e, a black square
indicates that it is c, a black disk at the point p = (0,−2) indicates that f(p) = c and it
specifies the position of the lamplighter. A normal form of the group element h is the string:
0100011000000100001000C1000101111000011000101100001.

We denote by L ⊆ Σ∗ a language of all such normal forms. The described normal form
of Z2 ≀ Z2 defines a bijection ψ : L → Z2 ≀ Z2 mapping w ∈ L to the corresponding group
element g ∈ Z2 ≀ Z2. This normal form is not quasigeodesic [3, Remark 9].

Construction of Turing machines computing the right multiplication in Z2 ≀Z2 by a±1, b±1

and c. For the right multiplication in Z2 ≀ Z2 by c, consider a one–tape Turing machine
which reads the input u ∈ Σ∗ from left to right and when the head reads a symbol C0 or C1

it changes it to C1 or C0, respectively, and then it halts. If the head reads the blank symbol

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:7

Figure 2: A digraph Γ and subsets of Z2: O, ℓ1, ℓ2, ℓ3, ℓ4, D1, D2, D3 and D4.

⊡, which indicates that the input u has been read, it halts. The described Turing machine
halts in linear time for every input u ∈ Σ∗. Moreover, if the input u ∈ L, it computes the
output v ∈ L for which ψ(u)c = ψ(v).

Let us describe a two–tape Turing machine computing the right multiplication by a in
Z2 ≀ Z2 which halts in linear time on every input in u ∈ Σ∗. We refer to this Turing machine
as TMa. A key idea for constructing TMa is to divide Z2 = {(x, y) |x, y ∈ Z} into nine
subsets O, ℓ1, ℓ2, ℓ3, ℓ4, D1, D2, D3 and D4 shown on Fig. 2:

• O = {(0, 0)},
• ℓ1 = {(x,−(x− 1)) ∈ Z2 |x > 0},
• ℓ2 = {(x, x) ∈ Z2 |x > 0},
• ℓ3 = {(−x, x) ∈ Z2 |x > 0},
• ℓ4 = {(−x,−x) ∈ Z2 |x > 0},
• D1 = {(x, y) ∈ Z2 | − (x− 1) < y < x, x > 1},
• D2 = {(x, y) ∈ Z2 | − y < x < y, y > 0},
• D3 = {(x, y) ∈ Z2 |x < y < −x, x < 0},
• D4 = {(x, y) ∈ Z2 | y < x < −y + 1, y < 0}.
For a given k ∈ N we denote by i the number of turns around the point (0, 0) a cursor
makes when moving along the graph Γ from the vertex t(1) to the vertex t(k). Formally, i is
defined as follows. Let kj = (j + 1,−j) for j ⩾ 1. If kj ⩽ k < kj+1, we put i = j; if k < k1,
we put i = 0.

Now we notice the following. If t(k) ∈ ℓ1, then t(m) ∈ D1 for k < m < k + (2i + 1)
and t(m) ∈ ℓ2 for m = k + (2i+ 1). If t(k) ∈ ℓ2, then t(m) ∈ D2 for k < m < k + (2i+ 2)
and t(m) ∈ ℓ3 for m = k + (2i+ 2). If t(k) ∈ ℓ3, then t(m) ∈ D3 for k < m < (2i+ 2) and
t(m) ∈ ℓ4 for m = k + (2i+ 2). If t(k) ∈ ℓ4, then t(m) ∈ D4 for k < m < k + (2i+ 3) and
t(m) ∈ ℓ1 for m = k + (2i+ 3). These observations ensure the correctness of the stage 3 of
Algorithm 2.1.

Algorithm 2.1 (First iteration). Initially for TMa a content of the first tape is ⊞u⊡∞

with a head over ⊞. A content of the second tape is ⊞⊡∞ with a head over ⊞. In the first
iteration TMa moves a head associated to the first tape from left to right until it reads
the symbols C0 or C1 each time identifying the set O, ℓ1, ℓ2, ℓ3, ℓ4, D1, D2, D3 or D4

which contains t(k) for the kth symbol of u being read. The second tape of TMa is used
for counting the number of turns i when t(k) moves along a spiral formed by a graph Γ.
Formally, in the first iteration TMa works as follows until the head associated to the first

1:8 P. Kruengthomya and D. Berdinsky Vol. 15:2

tape reads either C0, C1 or ⊡. Let S be a variable which can take values only in the set
{O, ℓ1, ℓ2, ℓ3, ℓ4, D1, D2, D3, D4}.
(1) TMa reads the first 9 symbols of u setting S to O, ℓ1, ℓ2, D2, ℓ3, D3, ℓ4, and D4 when

the head reads the kth symbol of u for k = 1, 2, 3, 4, 5, 6, 7, 8, respectively.
(2) TMa reads the 10th symbol of u and set S = ℓ1. On the second tape TMa moves the

head right to the next cell and writes the symbol T used for storing the number of turns
i.

(3) The following steps are repeated in loop one after another.
(a) TMa reads the next symbol of u, moves the head associated to the second tape left

to the previous cell and set S = D1. Then TMa keeps reading u and, simultaneously,
on the second tape it moves the head first left until it reads ⊞ and then right until
it reads ⊡. Then it sets S = ℓ2.

(b) TMa reads the next symbol of u, moves the head associated to the second tape left
to the previous cell and set S = D2. Then TMa keeps reading u and, simultaneously,
on the second tape it moves the head first left until it reads ⊞ and then right until
it reads ⊡. Then it sets S = ℓ3.

(c) TMa reads the next symbol of u, moves the head associated to the second tape left
to the previous cell and set S = D3. Then TMa keeps reading u and, simultaneously,
on the second tape it moves the head first left until it reads ⊞ and then right until
it reads ⊡. Then it sets S = ℓ4.

(d) TMa reads the next symbol of u, moves the head associated to the second tape left
to the previous cell and set S = D4. Then TMa keeps reading u and, simultaneously,
on the second tape it moves the head first left until it reads ⊞ and then right until
it reads ⊡. Then TMa reads the next symbol of u, writes T on the second tape and
set S = ℓ1.

If the head associated to the first tape reads ⊡, TMa halts. If it reads C0 or C1, TMa checks
if the head associated to the second tape reads ⊡. If the symbol it reads is not ⊡, on the
seconds tape TMa moves the head right until it reads ⊡. Finally, unless TMa halts, the
content of the first tape is ⊞u⊡∞ with the head over C0 or C1 symbol and the content of
the second tape is ⊞T i⊡∞ with the head over the first ⊡ symbol.

The right multiplication of g = (f, z) ∈ Z2 ≀Z2 by a changes a position of the lamplighter
z mapping g to ga = (f, z′), where z = (x, y) and z′ = (x + 1, y). Let k and k′ be the
integers for which t(k) = z and t(k′) = z′. Now we notice the following. If z ∈ D4 ∪ ℓ4, then
k′ = k + 1. If z ∈ ℓ1 ∪D1 ∪ ℓ2, then k′ = k + (8i+ 9). If z ∈ D2 ∪ ℓ3, then k′ = k − 1. If
z ∈ D3, then k

′ = k − (8i+ 5). So for the second iteration there are four cases to consider:
S ∈ {O,D4, ℓ4}, S ∈ {ℓ1, D1, ℓ2}, S ∈ {D2, ℓ3} and S = D3.
Case 1. Suppose S ∈ {O,D4, ℓ4}. On the first tape TMa writes 0 or 1, if the head reads
C0 or C1, respectively. Then the head moves right to the next cell. If the head reads 0 or ⊡,
it writes C0. If the head reads 1, it writes C1. Finally TMa halts.
Case 2. Suppose S ∈ {ℓ1, D1, ℓ2}. We divide a routine for this case into three stages.

1. On the first tape TMa writes 0 or 1, if the head reads C0 or C1, respectively.
2. The following subroutine is repeated four times:

(a) The head associated to the first tape moves right to the next cell. If the head reads
⊡, it writes 0. The head associated to the second tape moves left to the previous
cell.

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:9

(b) The head associated to the first tape keeps moving to the right writing 0 if it reads
⊡. Simultaneously, the head associated to the second tape moves first left until it
reads ⊞ and then right until it reads ⊡.

3. The head associated to the first tape moves right to the next cell making the last (8i+9)th
move. If the head reads 0 or ⊡, it writes C0. If the head reads 1, it writes C1. Finally
TMa halts.

Case 3. Suppose S ∈ {D2, ℓ3}. We divide a routine for this case into two stages.

1. Let ERASE be a boolean variable. If the head associated to the first tape reads C1, TMa

sets ERASE = false. If it reads C0, the head moves right to the next cell. If it reads
⊡, TMa sets ERASE = true; otherwise, it sets ERASE = false. Then the head moves
back to the previous cell. Note that ERASE = true iff the head reads the last symbol
of u which is C0. Now, if ERASE, the head associated to the first tape writes ⊡. If
not ERASE, the head writes 0 or 1 if it reads C0 or C1, respectively.

2. The head associated to the first tape moves left to the previous cell. If the head reads 0
or 1, it writes C0 or C1, respectively. Finally TMa halts.

Case 4. Suppose S = D3. We divide a routine for this into three stages.

1. The first stage is exactly the same as the first stage in the case 3.
2. The following subroutine is repeated four times:

(a) The head associated to the second tape moves left to the previous cell.
(b) The head associated to the first tape moves left. For each move, if ERASE and the

head reads 0, it writes ⊡. If ERASE and the head reads 1, TMa sets ERASE = false.
Simultaneously, the head associated to the second tape moves first left until it reads
⊞ and then right it reads ⊡.

3. The head associated to the first tape moves left to the previous cell making the last
(8i+ 5)th move. If the head reads 0 or 1, it writes C0 or C1, respectively. Finally TMa

halts.

Clearly, the runtime of Algorithm 2.1 is linear. Moreover, for each of the cases 1–4 the routine
requires at most linear time. So TMa halts in linear time for every input u ∈ Σ∗. If u ∈ L,
TMa halts with the output v ∈ L written on the first tape for which ψ(u)a = ψ(v). In the
same way one can construct two–tape Turing machines computing the right multiplication by
a−1 and b±1 which halt in linear time on every input. Thus we have the following theorem.

Theorem 2.2. The wreath product Z2 ≀ Z2 is Cayley 2–tape linear–time computable.

3. The Wreath Product Z2 ≀ F2

In this section we show that the group Z2 ≀ F2 is Cayley 2–tape linear–time computable.
Every group element of Z2 ≀F2 can be written as a pair (f, z), where z ∈ F2 and f : F2 → Z2

is a function for which f(ξ) is the non–identity element of Z2 for at most finitely many
ξ ∈ F2. We denote by c the non–identity element of Z2 = {e, c} and by a, b the generators
of F2 = ⟨a, b⟩. The group Z2 is canonically embedded in Z2 ≀ F2 by mapping c to (fc, e),
where fc : F2 → Z2 is a function for which fc(x) = e for all x ̸= e and fc(e) = c. The group
F2 is canonically embedded in Z2 ≀ F2 by mapping x ∈ F2 to (fe, x), where fe(y) = e for
all y ∈ F2. Therefore, we can identify a, b and c with the corresponding group elements
(fe, a), (fe, b) and (fc, e) in Z2 ≀ F2, respectively. The group Z2 ≀ F2 is generated by a, b and
c, so S = {a, a−1, b, b−1, c} is a set of its semigroup generators. The formulas for the right

1:10 P. Kruengthomya and D. Berdinsky Vol. 15:2

Figure 3: A Cayley graph of F2 and an element (f, z) ∈ Z2 ≀ F2. Black and white squares indicate

that a value of f at a given point is c and e, respectively. The black disc indicates a

position of the lamplighter z and that f(z) = c.

multiplication in Z2 ≀F2 by a, a−1, b, b−1 and c are as follows. For a given g = (f, z) ∈ Z2 ≀F2,
ga = (f, za), ga−1 = (f, za−1), gb = (f, zb), gb−1 = (f, zb−1) and gc = (f ′, z), where
f ′(x) = f(x) for all x ̸= z and f ′(z) = f(z)c.

Normal form. We will use a normal form for elements of Z2 ≀ F2 described in [3]. Each
element of F2 is identified uniquely with a reduced word over the alphabet {a, b, a−1, b−1}.
We denote by Fa and Fb the sets of elements of F2 for which the reduced words are of
the form a±1w and b±1w, respectively. Clearly, F2 = Fa ∪ Fb ∪ {e}. Let F ′

a be a set of
elements of F2 for which the reduced words are of the form wa±1 or the empty word ε,
and let F ′

b be a set of elements of F2 for which the reduced words are of the form wb±1.
Clearly, F2 = F ′

a ∪ F ′
b. For given s ∈ F ′

a and g = (f, z) ∈ Z2 ≀ F2, we denote by Vs the set
Vs = {p ∈ Fb | f(sp) = c ∨ z = sp}. Similarly, for a given t ∈ F ′

b and g = (f, z) ∈ Z2 ≀ F2,
we denote by Ht the set Ht = {p ∈ Fa | f(tp) = c ∨ z = tp}. Let Σ be the alphabet
consisting of ten main symbols: 0, 1, D0, D1, E0, E1, (,), [,] and fourteen additional
symbols: DA

0 , D
A
1 , D

B
0 , D

B
1 , D

C
0 , D

C
1 , E

C
0 , E

C
1 , A0, A1, B0, B1, C0 and C1. We will refer

to the symbols D0, D1, D
A
0 , D

A
1 , D

B
0 , D

B
1 , D

C
0 , D

C
1 and E0, E1, E

C
0 , E

C
1 as D–symbols and

E–symbols, respectively. A normal form of a given element g ∈ Z2 ≀ F2 is a string over the
alphabet Σ constructed in a recursive way as follows.

In the first iteration consider a cyclic subgroup A = {ai | i ∈ Z} ⩽ F2 which forms a
horizontal line in a Cayley graph of F2 with respect to a and b, see Fig. 3. Scan this line
from left to right checking for each s ∈ A whether or not Vs ̸= ∅, f(s) = c, s = z and s = e.
In case Vs ̸= ∅, s ̸= e and s ̸= z, write the symbols D0 or D1, if f(s) = e or f(s) = c,
respectively. Similarly, in case Vs ̸= ∅, s = e and z ̸= e, write the symbols DA

0 or DA
1 , in

case Vs ̸= ∅, s = e and z = e, write the symbols DB
0 or DB

1 and in case Vs ̸= ∅, s = z and
s ̸= e, write the symbols DC

0 or DC
1 , if f(s) = e or f(s) = c, respectively. In case Vs = ∅,

s ̸= e and s ̸= z, write the symbols 0 or 1, if f(s) = e or f(s) = c, respectively. Similarly,
in case Vs = ∅, s = e and z ̸= e, write the symbols A0 or A1, in case Vs = ∅, s = e and
z = e, write the symbols B0 or B1 and in case Vs = ∅, s = z and s ≠ e, write the symbol
C0 or C1, if f(s) = e or f(s) = c, respectively. Finally, for the obtained bi–infinite string
cut the infinite prefix and suffix consisting of 0s, so the first and the last symbols of the
remained finite string are not 0. For the element of Z2 ≀ F2 shown in Fig. 3 the resulted
string is 11DA

0 D01.

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:11

In the second iteration each new D–symbol σ is changed to a string of the form (u−σu+),
where the strings u− and u+ are obtained as follows. Every D–symbol corresponds to
a group element s ∈ F2. In order to construct u− scan the elements on a vertical ray
B−
s = {sbj | j < 0} from bottom to top checking for each t ∈ B−

s whether or not Ht ̸= ∅,
f(t) = c and t = z. In case Ht ̸= ∅ and t ̸= z, write the symbols E0 or E1, if f(t) = e or
f(t) = c, respectively. Similarly, in case Ht ≠ ∅ and t = z, write the symbols EC0 or EC1 ,
in case Ht = ∅ and t ̸= z, write the symbols 0 or 1 and in case Ht = ∅ and t = z, write
the symbols C0 or C1, if f(t) = e or f(t) = c, respectively. Finally, for the obtained infinite
string cut the infinite prefix of 0s, so the first symbol of the remained finite string u− is not
0. In a similar way a string u+ is constructed by scanning the elements on a vertical ray
B+
s = {sbj | j > 0} from bottom to top and cutting the infinite suffix consisting of 0s. For

the element shown in Fig. 3 the resulted string is 11(1E0D
A
0 E0)(E0D0E1)1.

In the third iteration each new E–symbol µ is changed to a string of the form [v−µv+],
where the strings v− and v+ are obtained as follows. Every E–symbol corresponds to a
group element t ∈ F2. In order to construct v− scan the elements on a horizontal ray
A−
t = {tai | i < 0} from left to right checking for each s ∈ A−

t whether or not Vs ̸= ∅,
f(s) = c and s = z. In case Vs ̸= ∅ and s ≠ z, write the symbols D0 or D1, if f(s) = e or
f(s) = c, respectively. Similarly, in case Vs ≠ ∅ and s = z, write the symbols EC0 or EC1 , if
f(s) = e or f(s) = c, respectively. In case Vs = ∅ and s ̸= z, write the symbols 0 or 1, if
f(s) = e or f(s) = c, respectively. Similarly, in case Vs = ∅ and s = z, write the symbols
C0 or C1, if f(s) = e or f(s) = c, respectively. Finally, for the obtained infinite string cut
the infinite prefix consisting of 0s, so the first symbol of the remained finite string v− is not
0. In a similar way a string v+ is constructed by scanning the elements on a horizontal ray
A+
t = {tai | i > 0} from left to right and cutting the infinite suffix consisting of 0s. For the

element in Fig. 3 the resulted string is 11(1[1E01]D
A
0 [E0D1])([1E0]D0[1E1])1.

This process is then repeated recursively until no new D or E–symbols appear: for i > 1
the (2i)th and the (2i+ 1)th iterations are performed exactly as the second and the third
iterations described above, respectively. For the element in Fig. 3 the resulted string is
11(1[1E01]D

A
0 [E0(C1D1)])([1E0]D0[1E1])1.

We remark that the symbols C0, C1, D
C
0 , D

C
1 , E

C
0 , E

C
1 and A0, A1, D

A
0 , D

A
1 are used to

mark the position of the lamplighter z ∈ F2 and the identity e ∈ F2, respectively, when
z ̸= e. The symbols B0, B1, D

B
0 , D

B
1 are used to mark the position of the lamplighter and

the identity when z = e.
For a given group element g = (f, z) ∈ Z2 ≀F2, let u ∈ Σ∗ be a normal form of g obtained

by a recursive procedure described above. We denote by L ⊆ Σ∗ a language of all such
normal forms. The described normal form of Z2 ≀ F2 defines a bijection ψ : L → Z2 ≀ F2

mapping u ∈ L to the corresponding group element g ∈ Z2 ≀ F2. This normal form is
quasigeodesic [3, Theorem 5].

Construction of Turing machines computing the right multiplication in Z2 ≀F2 by a±1, b±1

and c. For the right multiplication in Z2 ≀F2 by c, consider a one–tape Turing machine which
reads the input u ∈ Σ∗ from left to right and when the head reads a symbol DC

i , E
C
i , D

B
i , Ci

or Bi, i = 0, 1, it changes this symbol to DC
j , E

C
j , D

B
j , Cj or Bj , respectively, for j = i+ 1

mod 2, and then it halts. If the head reads the blank symbol ⊡, which indicates that the
input u has been read, it halts. This Turing machine halts in linear time for every input
u ∈ Σ∗. Moreover, if the input u ∈ L, it computes the output v ∈ L for which ψ(u)c = ψ(v).

Let us describe a two–tape Turing machine computing the right multiplication by a in
Z2 ≀ F2 which halts in linear time on every input in u ∈ Σ∗. We refer to this Turing machine

1:12 P. Kruengthomya and D. Berdinsky Vol. 15:2

as TMa. We refer to the symbols C0, C1, D
C
0 , D

C
1 , E

C
0 , E

C
1 as C–symbols, B0, B1, D

B
0 , D

B
1

as B–symbols and (,), [,] as brackets symbols.

Algorithm 3.1 (First iteration). Initially for TMa a content of the first tape is ⊞u⊡∞

with a head over ⊞. A content of the second tape is ⊞⊡∞ with a head over ⊞. In the first
iteration TMa moves a head associated to the first tape from left to right until it reads
either C or B–symbol. The second tape is used as a stack for storing the bracket symbols
simultaneously checking their configuration:

• If a head on the first tape reads the symbol (or [, on the second tape a head moves right
to the next cell and writes this symbol;

• If a head on the first tape reads the symbol) or], TMa checks if a head on the second
tape reads (or [, respectively. If not, TMa halts. Otherwise, on the second tape a head
writes the blank symbol ⊡ and moves left to the previous cell.

If on the first tape a head does not read a C or B–symbol, TMa halts after a head reads a
blank symbol ⊡ indicating that the input has been read.

Let S be the symbol a head associated to the first tape reads at the end of the first iteration.
In the second iteration TMa works depending on the symbol S. There are three cases to
consider: S ∈ {DC

0 , D
C
1 , D

B
0 , D

B
1 }, S ∈ {EC0 , EC1 } and S ∈ {C0, C1, B0, B1}.

Case 1. Suppose S ∈ {DC
0 , D

C
1 , D

B
0 , D

B
1 }. We notice that if the input u ∈ L and

S ∈ {DC
0 , D

C
1 , D

B
0 , D

B
1 }, then on the second tape a head must read the left bracket symbol

(. So if it is not the left bracket symbol (, TMa halts. If it is the left bracket symbol (, TMa

continues working as described in Algorithm 3.2.

Algorithm 3.2 (Second iteration for Case 1). First TMa marks the left bracket symbol (

on the second tape by changing it to (̊. On the first tape it changes the symbol S to D0, D1,
DA

0 and DA
1 if S = DC

0 , D
C
1 , D

B
0 and DB

1 , respectively. Then TMa proceeds as shown below.

(1) TMa keeps reading a content of the first tape while on the second tape it works exactly
as in Algorithm 3.1 until on the first tape a head reads the right bracket symbol) and,

at the same time, on the second tape a head reads the marked left bracket symbol (̊. If
such situation does not occur, TMa halts after on the first tape a head reads a blank
symbol ⊡.

(2) On the first tape a head moves right to the next cell and on the second tape a head
writes the blank symbol ⊡. Now let S′ be the symbol that a head associated to the first
tape reads. If S′ /∈ {0, 1, E0, E1, A0, A1,⊡,], (}, TMa halts. Otherwise, depending on
S′, TMa proceeds as follows.
(a) If S′ = 0, 1, E0, E1, A0 or A1, TMa changes it to C0, C1, E

C
0 , E

C
1 , B0 or B1,

respectively, and then halts.
(b) If S′ = ⊡, TMa changes it to C0 and then halts.

(c) If S′ = (, on the second tape a head writes the marked left bracket (̊ and on the
first tape a head moves right to the next cell. After that TMa keeps reading a
content of the first tape while on the second tape it works exactly like in Algorithm
3.1 until a head associated to the first tape reads a symbol Q = D0, D1, D

A
0 or DA

1

and, at the same time, a head associated to the second tape reads the marked left

bracket (̊. If such situation does not occur, TMa halts after on the first tape a head
reads a blank symbol ⊡. Finally TMa changes the symbol Q to DC

0 , D
C
1 , D

B
0 or

DB
1 , if Q = D0, D1, D

A
0 or DA

1 , respectively, and then it halts.

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:13

(d) If S′ =], TMa shifts a non–blank content of the first tape starting with this right
bracket symbol] by one position to the right and writes C0 before it. Then TMa

halts.

Case 2. Suppose S ∈ {EC0 , EC1 }. TMa continues working as described in Algorithm 3.3.

Algorithm 3.3 (Second iteration for Case 2). On the first tape TMa changes S to E0 and
E1, if S = EC0 and S = EC1 , respectively, and moves a head right to the next cell. Let S′

be the symbol that a head associated to the first tape reads. If S′ /∈ {0, 1, (,]}, TMa halts.
Otherwise, depending on S′, TMa proceeds as shown below.

(a) If S′ = 0 or 1, TMa changes it to C0 or C1, respectively, and then halts.

(b) If S′ = (, on the second tape a head writes the marked left bracket (̊ and on the first
tape a head moves right to the next cell. Then TMa keeps reading a content of the
first tape while on the second tape it works exactly as in Algorithm 3.1 until a head
associated to the first tape reads a symbol Q = D0 or D1 and, at the same time, a head

associated to the second tape reads the marked left bracket (̊. If such situation does
not occur, TMa halts after on the first tape a head reads a blank symbol ⊡. Finally
TMa changes the symbol Q to DC

0 or DC
1 , if Q = D0 or D1, respectively, and halts.

(c) If S′ =], TMa works exactly as in the case d for the second stage of Algorithm 3.2.

Case 3. Suppose S ∈ {C0, C1, B0, B1}. Let P be the symbol a head associated to the
second tape reads. We notice that if the input u ∈ L and S ∈ {C0, C1}, then P ∈ {(, [,⊞}. If
u ∈ L and S ∈ {B0, B1}, then P = ⊞. So if S ∈ {C0, C1} and P /∈ {(, [,⊞} or S ∈ {B0, B1}
and P ̸= ⊞, TMa halts. Otherwise, it continues working as described in Algorithm 3.4.

Algorithm 3.4 (Second iteration for Case 3). Depending on P and S, TMa works as shown
below.

(a) If P = (, then TMa changes the symbol S to the substring w that is equal to [E0C0]
and [E1C0], if S = C0 and S = C1, respectively. This can be done by shifting the
non–blank content of the first tape following S by three positions to the right and then
wring w before it; in particular, the symbol S will be overwritten by the left bracket
symbol [.

(b) If P = [and S = C1, TMa changes C1 to 1 and moves a head associated to the first
tape by one position to the right. Let S′ be the symbol a head associated to the first
tape reads. If S′ /∈ {0, 1, E0, E1, (,]}, then TMa halts. Otherwise, it continues working
as shown below.
• If S′ ∈ {0, 1, E0, E1}, then TMa changes S′ to C0, C1, E

C
0 , E

C
1 if S′ = 0, 1, E0, E1,

respectively, and then it halts.
• If S′ = (, then TMa works exactly as in the case b for Algorithm 3.3.
• If S′ =], TMa works exactly as in the case d for the second stage of Algorithm 3.2.

(c) If P = [and S = C0, TMa moves a head associated to the first tape by one position
to the left. Let T be the symbol the head reads. Depending on T , TMa proceeds as
shown below.
• If T ̸= [, TMa moves the head by one position to the right, changes C0 to 0 and
moves the head again by one position to the right. After that, depending on the
symbol S′ the head reads, it continues working exactly as in the case b of the present
algorithm.

• If T = [, TMa reads the two symbols following C0. Let S′ and S′′ be the first and
the seconds symbols following C0, respectively. If S′ ∈ {E0, E1} and S′′ =], then

1:14 P. Kruengthomya and D. Berdinsky Vol. 15:2

TMa changes the substring [C0S
′] to the symbol C0 or C1 if S′ = E0 or S′ = E1,

respectively. This can be done by shifting the non–blank content of the first tape
following the substring [C0S

′] by three positions to the left and then changing the left
bracket symbol [to C0 or C1 if S′ = E0 or S′ = E1, respectively. If S′ /∈ {E0, E1}
or S′′ ̸=], TMa shifts the non–blank content of the first tape following C0 by one
position to the left. Then, if S′ ∈ {0, 1, E0, E1, (}, TMa continues working exactly as
in the case b of the present algorithm and halts otherwise.

(d) If P = ⊞, TMa moves a head associated to the first tape by one position to the left.
Let T be the symbol the head reads. Depending on S and T , TMa proceeds as follows.
If T ̸= ⊞ or S ∈ {C1, B0, B1}, TMa moves the head by one position to the right,
changes S to 0, 1, A0 or A1, if S = C0, C1, B0 or B1, respectively, and moves the head
again by one position to the right. If T = ⊞ and S = C0, TMa shifts the non–blank
content of the first tape following C0 by one position to the left erasing C0 and places
the head over the first symbol after ⊞. Now let S′ be a symbol the head reads. If
S′ /∈ {0, 1, A0, A1,⊡, (}, TMa halts. Otherwise, if S′ ∈ {0, 1, A0, A1,⊡}, TMa changes
S′ to C0, C1, B0, B1 and C0 if S′ = 0, 1, A0, A1 and ⊡, respectively, and then halts. If
S′ = (, TMa moves a head associated to the second tape by one position to the right.
After that it continues working exactly as in the case c for the stage 2 of Algorithm 3.2.

The runtime of Algorithm 3.1 is linear. Also, as shifting a portion of a tape by a fixed
number of positions requires at most linear time, for each of the algorithms 3.2–3.4 the
runtime is linear. Therefore, TMa halts in linear time for every input u ∈ Σ∗. Moreover,
if the input u ∈ L, TMa halts with the output v ∈ L for which ψ(u)a = ψ(v) written on
the first tape. Two–tape Turing machines computing the right multiplication by a−1 and
b±1 which halt in linear time one every input are constructed in the same way as TMa with
minor modifications. Thus we have the following theorem.

Theorem 3.5. The wreath product Z2 ≀ F2 is Cayley 2–tape linear–time computable.

4. Thompson’s Group F

In this section we show that Richard Thompson’s group F is Cayley 2–tape linear–time
computable. The group F = ⟨x0, x1 | [x−1

0 x1, x
−1
0 x1x0], [x

−1
0 x1, x

−2
0 x1x

2
0]⟩ admits the infinite

presentation of the form:

F = ⟨x0, x1, x2 . . . | xjxi = xixj+1 for i < j⟩.
This infinite presentation provides a standard infinite normal form for elements of F with
respect to generators xi, i ⩾ 0, discussed by Brown and Geoghegan [6]. Namely, applying
the relations xjxi = xixj+1 for i < j, a group element g ∈ F can be written uniquely as:

xe0i0 x
e1
i1
. . . xemim x

−fn
jn

. . . x−f1j1
x−f0j0

,

where:

• 0 ⩽ i0 < i1 < i2 < · · · < im and 0 ⩽ j0 < j1 < j2 < · · · < jn;
• ei, fj > 0 for all i, j;

• if xi and x
−1
i are both present in the expression, then so is xi+1 or x−1

i+1.

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:15

For other equivalent interpretations of Thompson’s group F , as the set of piecewise
linear homomorphisms of the interval [0, 1] and as the set of pairs of reduced finite rooted
binary trees, we refer the reader to [7].

Normal form. Based on the standard infinite normal form (4) Elder and Taback [10]
constructed a normal form for elements of F over the alphabet Σ = {a, b,#} as follows.
Let M = max{im, jn}. First let us rewrite (4) in the form such that every generator
xi, i = 0, . . . ,M appears twice:

xr00 x
r1
1 x

r2
2 . . . xrMM x−sMM . . . x−s22 x−s11 x−s00 ,

where ri, si ⩾ 0, exactly one of rM , sM is nonzero, and risi > 0 implies ri+1 + si+1 > 0.
After that we rewrite (4) in the following form:

ar0bs0#ar1bs1# . . .#arM bsM ,

where again ri, si ⩾ 0, exactly one of rM , sM is nonzero, and risi > 0 implies ri+1+ si+1 > 0.
We denote by L∞ the language of all strings of the form (4). The language L∞ is regular [10,
Lemma 3.1]. Following the notation in [10], for a given u = ar0bs0#ar1bs1# . . .#arM bsM from
the language L∞ we denote by u the corresponding group element xr00 x

r1
1 x

r2
2 . . . xrMM x−sMM . . .

x−s22 x−s11 x−s00 in F . The described normal form of F defines a bijection between L∞ and F
mapping u to u. This normal form is quasigeodesic [10, Proposition 3.3]

Construction of Turing machines computing the right multiplication in F by x±1
0 and

x±1
1 . By [10, Proposition 3.4] the language Lx−1

0
= {⊗(u, v) |u, v ∈ L∞, ux

−1
0 =F v} is

regular. This implies that there is a linear–time algorithm that from a given input u ∈ L∞
computes the output v ∈ L∞ such that ux−1

0 =F v; see, e.g., [11, Theorem 2.3.10]. Moreover,
this algorithm can be done in linear time on a one–tape Turing machine [8, Theorem 2.4].
Thus we only have to analyze the right multiplication by x±1

1 . Below we will show that

the right multiplication in the group F by x±1
1 can be computed in linear time on a 2–tape

Turing machine.
We denote by w the infinite normal form (4) for a group element g ∈ F . We denote by

u and v the normal forms (4) for g and gx−1
1 , respectively; that is, u = g and v = gx−1

1 . Let

us describe multi–tape1 Turing machines computing the right multiplication by x−1
1 and x1

in F which halts in linear time on every input in Σ∗. We refer to these Turing machines
as TMx−1

1
and TMx1 , respectively. Initially for TMx−1

1
a content of the first tape is ⊞u⊡∞

with the head over ⊞. For TMx1 a content of the first tape is ⊞v⊡∞ with the head over
⊞. A content for each of the other tapes is ⊞⊡∞ with the head over ⊞. We may assume
that the input is in the regular language of normal forms L∞. This can be verified in linear
time by reading the input on the first tape. If the input is not in L∞, a Turing machine
halts. Otherwise, a head associated to the first tape returns to its initial position over the ⊞
symbol.

The general descriptions of TMx−1
1

and TMx1 are as follows. For the input u a Turing

machine TMx−1
1

verifies each of the cases described by Elder and Taback in [10, Proposi-

tion 3.5] one by one. Once it finds a valid case, it runs a subroutine computing v from u and
writes it on the first tape. Then TMx−1

1
halts. For the input v a Turing machine TMx1 first

copies it on the second tape where it is stored until it halts. Then TMx1 tries each of the
cases one by one. For the case being tried it runs a subroutine computing u from v written

1Describing TM
x−1
1

and TMx1 we allow them to have as many tapes as needed. However, later we notice

that two tapes are enough for computing the right multiplication by x−1
1 and x1 in linear time.

1:16 P. Kruengthomya and D. Berdinsky Vol. 15:2

on the second tape and writes the output u on the first tape. Then it verifies whether or not
the case being tried is valid for u. If it is valid, then it runs the corresponding subroutine
for TMx−1

1
computing v from u and writes it on a third tape; otherwise, it tries the next

case. Then TMx−1
1

verifies whether or not the contents of the second and the third tapes

are the same. If they are the same, then TMx−1
1

halts; otherwise, TMx−1
1

tries the next case.

As there are only finitely many cases to try, TMx−1
1

will halt with the string u written on

the first tape. For each of the cases in [10, Proposition 3.5] we describe a subroutine for its
validity verification, a subroutine for computing v from u and a subroutine for computing u
from v.
Case 1: Suppose that s0 = 0 or, equivalently, the infinite normal form w does not contain
x0 to a negative exponent. That is, u is either of the form u = ar0#γ for γ ∈ Σ∗ or u = ar0 ,
where r0 ⩾ 0. This case can be verified by reading u. There are the following three cases to
consider.
Case 1.1: The normal form u is of the form u = ar0 for r0 ⩾ 0. This case can be verified
by reading u. If u = ar0 for r0 ⩾ 0, then v = ar0#b. A subroutine for computing v from
u appends the suffix #b to u. A subroutine for computing u from v erases the last two
symbols of v by writing the blank symbols ⊡⊡.
Case 1.2: The normal from u contains at least one # symbol and wx−1

1 is the infinite

normal form for gx−1
1 . The latter is true if at least one of the following conditions holds.

(a) The expression w contains no x1 terms to a positive exponent: r1 = 0;
(b) The expression w contains x1 to a negative power: s1 ̸= 0;
(c) The expression w contains x2 to a nonzero power: r2 ̸= 0 or s2 ̸= 0.

Each of these three conditions can be verified by reading u. If u = ar0#ar1bs1γ, where γ
is empty or begins with #, then v = ar0#ar1bs1+1γ. A subroutine for computing v from
u shifts a suffix bs1γ by one position to the right and writes the b symbol before it. A
subroutine for computing u from v shifts the suffix bs1γ by one position to the left.
Case 1.3: The normal form u is of the form u = ar0#ar1γ with r1 > 0 and γ is either
empty or γ = ##γ′ for γ′ ∈ Σ∗. This case can be trivially verified by reading u. The infinite

normal form w is w = xr00 x
r1
1 η, where η is either empty or η = xrii . . . x

−sj
j for some i, j > 2.

Then wx−1
1 = xr00 x

r1
1 ηx

−1
1 = xr00 x

r1
1 η

′, where η′ is obtained from η replacing x±1
i by x±1

i−1.
Therefore, for u = ar0#ar1γ we have the following three subcases.

(a) If r1 > 1 and γ is empty, then v = ar0#ar1−1. A subroutine for computing v from u
erases the last symbol of u by writing the blank symbol ⊡. A subroutine for computing
u from v appends the a symbol to v.

(b) If r1 = 1 and γ is empty, then v = ar0 . A subroutine for computing v from u erases the
last two symbols of u by writing ⊡⊡. A subroutine for computing u from v appends
#a to v.

(c) If r1 > 1 and γ = ##γ′, then v = ar0#ar1−1#γ′. A subroutine for computing v from
u shifts the suffix #γ′ by two positions to the left. A subroutine for computing u from
v shifts the suffix #γ′ by two positions to the right and writes a# before it.

All described subroutines for Cases 1 can be done in linear time on one tape.
Case 2: Suppose that s0 ≠ 0. That is, u is either of the form u = ar0bs0#γ for γ ∈ Σ∗

or u = ar0bs0 , where r0 ⩾ 0 and s0 > 0. This can be verified in linear time by reading
u. Since w ends in x−1

0 , wx−1
1 is not the infinite normal form for gx−1

1 . Applying the

relations x−1
0 x−1

j = x−1
j+1x

−1
0 , j > 0, f0 times we obtain that if 1 + f0 ⩽ j1, gx

−1
1 is

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:17

equal to xe0i0 x
e1
i1
. . . xemim x

−fn
jn

. . . x−f1j1
x−1
1+f0

x−f00 . If 1 + f0 > j1, then applying the relations

x−1
j1
x−1
j = x−1

j+1x
−1
j1

, j > j1, f1 times we obtain that if 1 + f0 + f1 ⩽ j2, gx
−1
1 is equal to

xe0i0 x
e1
i1
. . . xemim x

−fn
jn

. . . x−f2j2
x−1
1+f0+f1

x−f1j1
x−f00 . This process is continued until the first time

we obtain x−1
R where either:

• R = 1 + f0 + f1 + · · ·+ fn > jn, or
• R = 1 + f0 + f1 + · · ·+ ft ⩽ jt+1 for some 0 ⩽ t ⩽ n− 1.

In Algorithm 4.1 below we describe a two–tape Turing machine TMR that for a given normal
form u written on the first tape writes a string bR on the second tape.

Algorithm 4.1 (A subroutine for computing R). Initially a content of the first tape is
⊞u⊡∞ with a head over ⊞. A content of the second tape is ⊞⊡∞ with a head over ⊞. Let
STOP1 be a boolean variable which is true if a head on the first tape reads ⊡ and false
otherwise, let STOP2 be a boolean variable which is true if a head on the second tape reads
⊞ and false otherwise. Finally let CASE be a boolean variable which is true if R > jn and
false if R = 1 + f0 + · · ·+ ft ⩽ jt+1 for some 0 ⩽ t ⩽ n− 1.

(1) On the first tape TMR moves a head by one position to the right. On the second tape
TMR moves a head by one position to the right and writes the symbol b.

(2) While not (STOP1 or STOP2):
(a) If a head on the first tape reads the a symbol, on the first tape TMR moves the

head by one position to the right.
(b) If a head on the first tape reads the b symbol, on the second tape TMR moves the

head by one position to the right and writes the b symbol while on the first tape it
moves a head by one position to the right.

(c) If a head on the first tape reads the # symbol, on the second tape TMR writes the
blank symbol ⊡ and moves a head by one position to the left while on the first tape
it moves a head by one position to the right.

(3) To find a correct value of the boolean variable CASE the subroutine proceeds as follows.
(a) If STOP1, we set CASE = true.
(b) If not STOP1, on the first tape TMR checks if a head reads the b symbol. If not,

on the first tape it moves a head by one position to the right and checks again if a
head reads the b symbol. This process is continued until either a head reads ⊡ or
the b symbol. If it reads ⊡, we set CASE = true. If it reads the b symbol, we set
CASE = false.

(4) Then TMR erases all b symbols on the second tape. If a head on the second tape reads
the b symbol it writes ⊡ and moves a head by one position to the left. This process is
continued until a head on the second tape reads ⊞.

(5) Depending on the value of CASE the subroutine proceeds as follows.
(a) Suppose CASE. First a head on the second tape moves by one position to the right

and writes the b symbol. Then, if a head on the first tape reads the b symbol, it
moves by one position to the left while a head on the second tape moves by one
position to the right and writes the b symbol. If a head on the first tape reads # or
the a symbol, it moves by one position to the left. This process is continued until a
head on the first tape reads ⊞.

(b) Suppose not CASE. If a head on the first tape reads the b symbol, it moves by one
position to the left while a head on the second tape moves by one position to the
right and writes the b symbol. If a head on the first tape reads # or the a symbol,

1:18 P. Kruengthomya and D. Berdinsky Vol. 15:2

it moves by one position to the left. This process is continued until a head on the
first tape reads ⊞.

From Algorithm 4.1 it can be seen that a subroutine for computing R can be done in
linear time on a two–tape Turing machine. Depending on the value of CASE we consider
the following two cases.
Case 2.1: Suppose CASE. That is, R > jn. Let M = max{im, jn}. There are three
subcases to consider: R > M , R = M and R < M . Each of these three subcases can be
checked as follows. First note that M is just the number of # symbols in the normal form u.
So we run a subroutine which reads u on the first tape and each time a head reads the #
symbol, on a separate tape it moves a head by one position to the right and writes the #
symbol. In the end of this subroutine the content of this separate tape is ⊞#M⊡∞. Now
to check whether R > M , R =M or R < M we can synchronously read the tapes ⊞bR⊡∞

and ⊞#M⊡∞ with the heads initially over the ⊞ symbols.
(a) Suppose R > M . Then the infinite normal form of gx−1

1 is

xe0i0 x
m1
i1
. . . xemim x

−1
R x−fnjn

. . . x−f2j2
x−f1j1

x−f00 ,

where f0 ̸= 0. We write u in the form u = ar0bs0γ, where γ is either empty or starts with #,
ends with a or b and contains exactlyM # symbols. Then v = ar0bs0γ#R−Mb. A subroutine
for computing v from u appends the string #R−Mb to u as follows. First a head on the
first tape where u is written moves to the last non–blank symbol. Then we synchronously
read the tapes ⊞bR⊡∞ and ⊞#M⊡∞ from the beginning until both heads are over the ⊡
symbols. If a head on the tape ⊞bR⊡∞ reads the b symbol but a head on the tape ⊞#M⊡∞

reads ⊡, on the first tape a head moves by one position to the right and writes the # symbol.
As a result the content of a first tape will be ⊞ar0br0γ#R−M⊡∞ with a head over the last
symbol. After that a head on the first tape moves by one position to right and writes the
b symbol.

A subroutine for computing u from v moves a head to the last symbol of u, which is
b. Then it writes the ⊡ and moves a head by one position to the left. If a head reads # it
writes ⊡ and moves a head by one position to the left. This process is continued until a head
reads a symbol which is not #. As a result the content of a first tape will be ⊞ar0bs0γ⊡∞.

(b) Suppose R =M . This can only occur if R = im. Then the infinite normal form of
gx−1

1 is either:

xe0i0 x
e1
i1
. . . xem−1

im
x−fnjn

. . . x−f2j2
x−f1j1

x−f0j0
if em > 1, or

xe0i0 x
e1
i1
. . . x

em−1

im−1
x−fnjn

. . . x−f2j2
x−f1j1

x−f0j0
if em = 1.

The latter expression is an infinite normal form as im = R ⩾ jn + 2 and w is an infinite
normal form. Indeed, for Case 2.1 we have that 1 + f0 + · · ·+ fn−1 > jn. Therefore,

R = 1 + f0 + · · ·+ fn−1 + fn ⩾ jn + 2.

If we write u in the form u = γ#saem , then v = γ#saem−1 when em > 1 and v = γ if
em = 1.

A subroutine for computing v from u reads u to check if em > 1 or em = 1. If em > 1,
it erases the last a symbol by writing ⊡. If em = 1, it erases the last a symbol by writing ⊡
and moves a head by one position to the left. If a head reads # it writes ⊡ and moves by
one position to the left. This is continued until a head reads a symbol which is not #. As a
result the content of the first tape will be ⊞γ⊡∞.

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:19

A subroutine for computing u from v is a follows. First we run Algorithm 4.1 for the
input v. As result we get ⊞bR⊡∞ written on a second tape. Now let M ′ be the number of
symbols in v. Like in the subcase (a) of Case 2.1 we run a subroutine that computes

M ′ and appends #R−M ′
to v if R ⩾M ′; if R < M ′ the consideration of this subcase (b) is

skipped. Finally in the last step it appends a. As a result the content of the first tape will
be ⊞γ#R−M ′

a⊡∞ if R > M ′ and ⊞γa⊡∞ if R =M ′.
(c) Suppose R < M . Then im =M . There are three subsubcases to consider.
1) The generator xR does not appear in w. That is, u is of the form u = γ#arR−1##η,

where η ∈ {a,#}∗; note that sR−1 = 0 by the inequality (4). This subsubcase is verified by
finding the Rth # symbol in u and checking whether or not the next symbol after it is a. If
it is not a, then xR does not appear in w. If we write u in the form u = γ#arR−1##η, then
v = γ#arR−1#b#η. A subroutine for computing v from u inserts the b symbol before the
(R+ 1)th # symbol – it shifts the suffix #η, which begins with the (R+ 1)th # symbol, by
one position to the right and writes the b symbol before it. A subroutine for computing u
from v shifts the suffix #η by one position to the left erasing the b symbol. This can be
done without knowing bR written on another tape: we read v from the right to the left until
a head reads the b symbol, then we shift the suffix #η following it by one position to the
left. This is a correct algorithm as the suffix η does not have any b symbols.

2) The generator xR appears in w together with xR+1. That is, u is either of the form
u = γ#arR#arR+1η, with rR, rR+1 > 0 , where η ∈ {a,#}∗ is either empty or begins with #.
This subsubcase is verified by finding the Rth and (R+ 1)th # symbols in u and checking
whether or not both symbols after them are a. If both of them are a, then xR and xR+1

appear in w. If we write u in the form u = γ#arR#arR+1η, then v = γ#arRb#arR+1η. A
subroutine for computing v from u inserts the b symbol before the (R+ 1)th # symbol like
in the previous subsubcase. A subroutine for computing u from v shifts the suffix #arR+1η
by one position to the left erasing the b symbol. Like in the previous case this can be done
without knowing bR written on another tape: we read v from the right to the left until a
head reads the b symbol, then we shift the suffix following it by one position to the left.

3) The generator xR appears in w but xR+1 does not appear in w. That is, u is of the
form u = γ#arR##η, where η ∈ {a,#}∗. This subsubcase is verified by checking whether
or not the first symbol after the Rth # symbol is a and the first symbol after the (R+ 1)th
symbol is not a. If the latter is true, then xR appears in w but xR+1 does not. Now if
u = γ#arR##η, where η ∈ {a,#}∗, then v = γ#arR−1#η; note that for rR = 1, v is a valid
normal form by the inequality (4). A subroutine for computing v from u shifts the suffix #η
following the (R+ 1)th # symbol by two positions to the left erasing the subword a# that
precedes this suffix. A subroutine for computing u from v first runs Algorithm 4.1 for the
input v writing ⊞bR⊡∞ on a second tape and then inserts the subword a# before the suffix
#η which begins with the (R+ 1)th # symbol; if the (R+ 1)th # symbol is not found in v
then the consideration of this subsubcase is skipped.
Case 2.2: Suppose not CASE. That is, R = 1 + f0 + f1 + · · · + ft ⩽ jt+1 for some
0 ⩽ t ⩽ n− 1. Then gx−1

1 is equal to:

xe0i0 x
e1
i1
. . . xemim x

−fn
jn

. . . x
−ft+1

jt+1
x−1
R x−ftjt

. . . x−f0j0
.

Note that R > jt by the construction of R. There are two cases to consider depending
whether or not (4) is an infinite normal form.
Case 2.2.1: Suppose that (4) is not an infinite normal form. This only happens when
R < jt+1 and for w the generator xR is present to a positive power while xR+1 is not

1:20 P. Kruengthomya and D. Berdinsky Vol. 15:2

present to any non–zero power. This situation occurs only if there is an index p ⩽ m for
which ip = R, ip+1 ̸= R + 1 and jt+1 ̸= R + 1. That is, u is of the form u = γ#arR##η.
This subcase is verified by finding the (R + 1)th # symbol and checking if the previous
symbol is a and the next symbol is #. If we write u in the form u = γ#arR##η, then
v = γ#arR−1#η. Note that for rR = 1, v is a valid normal form since R > jt + 1; this is
because 1 + f0 + · · ·+ ft−1 > jt, so R = 1 + f0 + · · ·+ ft−1 + ft > jt + 1.

A subroutine for computing v from u shifts the suffix #η following the (R + 1)th #
symbol by two positions to the left erasing the subword a# that precedes this suffix. A
subroutine for computing u from v is the same as for the subsubcase (c).3 of Case 2.1: it
runs Algorithm 4.1 for the input v and then inserts the subword a# before the suffix #η
which begins with the (R+ 1)th # symbol. Note that for Case 2.2.1 R must be the same
for u and v as R < jt+1.
Case 2.2.2: Suppose that (4) is an infinite normal form. This happens only in the following
subcases.

(a) x−1
R is already in w, that is, R = jt+1. That is, u is of the form u = γ#arRbsRη with
sR > 0, where η is either empty or begins with #. This subcase is verified by finding
the Rth # symbol in u and checking if the suffix following it is of the form akbµ for
k ⩾ 0. If we write u in the form u = γ#arRbsRη, then v = γ#arRbsR+1η. A subroutine
for computing v from u first reads the input u until it finds the Rth # symbol. Then it
reads the suffix arRbsRη until it reads the b symbol first time. After that it shifts the
suffix bsRη by one position to the right and writes the b symbol before it. A subroutine
for computing u from v first reads the input v until it finds the Rth # symbol. Then it
reads the suffix arRbsR+1η until it reads the b symbol first time. After that it erases
this b symbol and shifts the suffix following it by one position to the left.

(b) x−1
R is not in w, but xR and either xR+1 or x−1

R+1 are present in w. That is, u is of
the form u = γ#arR#arR+1bsR+1η with rR > 0 and rR+1 + sR+1 > 0, where η is either
empty of begins with #. This subcase is verified by finding the the Rth # symbol in
u and checking if the suffix following it is of the form ak#aµ or ak#bµ for k ⩾ 1. If
we write u in the form u = γ#arR#arR+1bsR+1η, then v = γ#arRb#arR+1bsR+1η. A
subroutine for computing v from u inserts the b symbol before the suffix #arR+1bsR+1η
which begins with the (R+ 1)th # symbol. A subroutine for computing u from v shifts
the suffix #arR+1bsR+1η by one position to the left which erases the b symbol preceding
this suffix.

(c) Both xR and x−1
R are not present in w. That is, u is of the form u = γ#arR−1##η;

note that bR−1 = 0 because R > jt + 1. This subcase is verified by finding the Rth #
symbol in u and checking that the symbol next to it is #. If we write u in the form
u = γ#arR−1##η, then v = γ#arR−1#b#η. A subroutine for computing v from u
inserts the b symbol after the Rth # symbol. A subroutine for computing u from v
shifts the suffix #η which begins with the (R+ 1)th # symbol by one position to the
left which erases the b symbol preceding this suffix.

All described subroutines for Case 2 can be done in linear time on two tapes. Indeed,
Algorithm 4.1 requires only two tapes with the output ⊞bR⊡∞ appearing on the second tape.
Furthermore, in all subroutines where we needed an extra tape we could use the convolution
of the second tape and this extra tape. When we use a separate tape to compute M , writing
⊞#M⊡∞ on it, we can simply do it on the second tape using the symbols

(
b
#

)
,
(
b
⊡

)
and

Vol. 15:2 CAYLEY LINEAR–TIME COMPUTABLE GROUPS 1:21

(⊡
#

)
. For the same argument in the construction of TMx1 introducing the additional tape

for storing a copy of v can be avoided. Thus we proved the following theorem.

Theorem 4.2. Thompson’s group F is Cayley 2–tape linear–time computable.

5. Discussion and Open Questions

Theorems 3.5 and 4.2 show that the wreath product Z2 ≀ F2 and Thompson’s group F admit
quasigeodesic 2–tape linear–time computable normal forms. The following questions are
apparent from these results.

1. Is F Cayley position–faithful (one–tape) linear–time computable?
2. Is Z2 ≀ F2 Cayley position–faithful (one–tape) linear–time computable?

It is an open problem whether or not F is automatic. The first question is a weak formulation
of this open problem. The group Z2 ≀ F2 is not automatic. However, it is not known whether
or not Z2 ≀ F2 is Cayley automatic. The second question is a weak formulation of the latter
problem. Theorem 2.2 shows that the wreath product Z2 ≀ Z2 admits a 2–tape linear–time
computable normal form. However, this normal form is not quasigeodesic2. It is an open
problem whether or not Z2 ≀ Z2 is Cayley automatic. As a weak formulation of this open
problem we leave the following question for future consideration.

3. Does Z2 ≀ Z2 admit a quasigeodesic normal form for which the right multiplication by a
group element is computed in polynomial time?

By Theorem 1.4, if for a normal form the right multiplication is computed on a one–tape
Turing machine in linear time, then it is always quasigeodesic. So when studying extensions of
Cayley automatic groups it sounds natural to restrict oneself to quasigeodesic normal forms.
We leave the following extensions of Cayley automatic groups for future consideration3:

• Cayley position–faithful (one–tape) linear–time computable groups;
• Cayley linear–time computable groups with quasigeodesic normal form;
• Cayley polynomial–time computable groups with quasigeodesic normal form.

This paper considers only the complexity of the right multiplication by a group element.
We leave studying the complexity of the left multiplication for future work.

Acknowledgment

The authors thank the anonymous reviewer for useful comments. The authors wish to
acknowledge fruitful discussions with Murray Elder.

2Though this normal form is not quasigeodesic, one can show that there is an algorithm computing it in
quadratic time.

3Adding the class of Cayley linear–time computable groups refines the Venn diagram of extensions of
interest shown in [2, Fig. 1].

1:22 P. Kruengthomya and D. Berdinsky Vol. 15:2

References

[1] G. Baumslag, M. Shapiro, and H. Short. Parallel poly–pushdown groups. Journal of Pure and Applied
Algebra, 140(3):209–227, 1999.

[2] D. Berdinsky, M. Elder, and P. Kruengthomya. Cayley polynomial–time computable groups. Information
and Computation, 288:1–15, 2022.

[3] D. Berdinsky and B. Khoussainov. Cayley automatic representations of wreath products. International
Journal of Foundations of Computer Sceince, 27(2):147–159, 2016.

[4] M. R. Bridson and R. H. Gilman. Formal language theory and the geometry of 3–manifolds. Commentarii
Mathematici Helvetici, 71(1):525–555, 1996.

[5] M. Brittenham, S. Hermiller, and D. Holt. Algorithms and topology of Cayley graphs for groups. Journal
of Algebra, 415:112–136, 2014.

[6] K. S. Brown and R. Geoghegan. An infinite–dimensional torsion–free FP∞ group. Invent. Math.,
77:367–381, 1984.

[7] J. W. Cannon, W. J. Floyd, and W. R. Parry. Introductory notes on Richard Thompson’s groups.
Enseign. Math, 42:215–256, 1996.

[8] J. Case, S. Jain, S. Seah, and F. Stephan. Automatic functions, linear time and learning. Logical Methods
in Computer Science, 9(3:19):1–26, 2013.

[9] M. Elder and J. Taback. C–graph automatic groups. Journal of Algebra, 413:289–319, 2014.
[10] M. Elder and J. Taback. Thompson’s group F is 1–counter graph automatic. Groups Complexity

Cryptology, 8(1):21–33, 2016.
[11] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston. Word

Processing in Groups. Jones and Barlett Publishers. Boston, MA, 1992.
[12] J. Hartmanis. Computational complexity of one–tape Turing machine computations. Journal of the

Association of Computing Machinery, 15:411–418, 1968.
[13] S. Jain, B. Khoussainov, and F. Stephan. Finitely generated semiautomatic groups. Computability,

7(2–3):273–287, 2018.
[14] S. Jain, B. Moldagaliyev, F. Stephan, and T. Tran. Lamplighter groups and automata. Acta Informatica,

59(4):451–478, 2022.
[15] O. Kharlampovich, B. Khoussainov, and A. Miasnikov. From automatic structures to automatic groups.

Groups, Geometry, and Dynamics, 8(1):157–198, 2014.
[16] C. Papadimitriou. Computational Complexity. Addison–Wesley, 1994.
[17] B. Trachtenbrot. Turing computations with logarithmic delay. Algebra i Logica, 3, 1964. (In Russian)

English translation in U. of California Computing Center, Tech. Rep. No. 5, Berkeley, Calif., 1966.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	Introduction
	1. Preliminaries
	2. The Wreath Product Z2 Z2
	3. The Wreath Product Z2 F2
	4. Thompson's Group F
	5. Discussion and Open Questions
	Acknowledgment
	References

