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Abstract. The Heisenberg group, here denoted H, is the group of all 3× 3 upper unitri-
angular matrices with entries in the ring Z of integers. A.G. Myasnikov posed the question
of whether or not the universal theory of H, in the language of H, is axiomatized, when
the models are restricted to H-groups, by the quasi-identities true in H together with
the assertion that the centralizers of noncentral elements be abelian. Based on earlier
published partial results we here give a complete proof of a slightly stronger result.

1. Introduction

A (multiplicatively written) group G is commutative transitive, briefly CT, provided the
relation of commutativity is transitive on G\{1}; equivalently, provided the centralizer of
every element g ̸= 1 is abelian.

Noncyclic free groups are universally equivalent, even elementarily equivalent. Myas-
nikov and Remeslennikov [MR] proved that their universal theory is axiomatized by the
quasi-identities they satisfy together with commutative transitivity. Fixing a noncyclic
free group F , they proved the analogous result in the language of F when the models are
restricted to F -groups.

Let A be a countably infinite set well-ordered as

{a1, a2, ..., an, ...} = {an+1 : n < ω}
where ω is the first limit ordinal which we take as the set of nonnegative integers provided
with its natural order. Let Fω(N2) be the group free in the variety of all 2-nilpotent groups
on the generators A. For each integer n ≥ 2 let Fn(N2) be the subgroup of Fω(N2) generated
(necessarily freely) by the initial segment {a1, a2, ..., an} of A. The Heisenberg group is the
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group H of all 3× 3 upper unitriangular matrices with entries in the ring Z of integers. It
is free in N2 on the generators

a1 =

1 0 0
0 1 1
0 0 1

 and a2 =

1 1 0
0 1 0
0 0 1


(See [4]). We take the liberty of identifying F2(N2) with H.

Now Fω(N2) is discriminated by the family of retractions Fω(N2) → H. That means
that given finitely many elements f1, ..., fk ∈ Fω(N2)\{1} there is a retraction Fω(N2) → H
which doesn’t annihilate any of them. (H discriminates N2 in the sense of Hanna Neumann
[8].) From this it follows that Fn(N2), n ≥ 2, are universally equivalent; moreover, since
the discrimination is done by retractions, they are universally equivalent in the language of
H. (See [3]).

Let CT(1) or noncentral commutative transitivity, briefly NZCT, be the property that
the relation of commutativity be transitive on G\Z(G) where Z(G) is the center of G.
Equivalently, NZCT asserts that the centralizers of noncentral elements are abelian. A
special case of a question posed by A.G. Myasnikov is whether or not the universal theory of
noncyclic free 2-nilpotent groups is axiomatized by the quasi-identities they satisfy together
with NZCT and whether or not that theory in the language of H is so axiomatized when
the models are restricted to H-groups.

In this paper, in the case of the language of H, we answer that question in the positive.
In fact we prove a slightly stronger result. The remainder of this paper contains four
additional sections. In Section 2 we fix definitions and notation. In Section 3 we prove the
main result. In Section 4 we ponder but do not settle the question in the language without
parameters from H. Finally in Section 5 we suggest problems for future research.

Before closing the introduction we note that the variety A2 of metabelian groups is
discriminated by its rank 2 free group. From this it follows that the noncyclic free metabelian
groups are universally equivalent. It is worth mentioning in passing that Remeslenikov and
Stohr proved in [9] that the universal theory of the noncyclic free metabelian groups is
axiomatized by the quasi-identities they satisfy together with commutative transitivity.

2. Pedantic Preliminaries

Let L0 be the first order language with equality containing a binary operation symbol · , a
unary operational symbol −1 and a constant symbol 1̂. If G is a (multiplicatively written)
group L0[G] is obtained from L0 by adjoining names ĝ for the elements g ∈ G\{1} as new
constant symbols. We find it convenient to commit the ”abuses” of identifying ĝ with g for
all g ∈ G and replacing · with juxtaposition. Moreover, we find it convenient to write an
inequation ∼ (s = t) as s ̸= t.

An identity, in L0[G] (Note: L0 = L[{1}]) is a universal sentence of the form ∀x (s(x) =
t(x)) where x is a tuple of variables and s(x) and t(x) are terms of L0[G]. Examples of
identities are the group axioms, namely:

∀x1, x2, x3 ((x1x2)x3 = x1(x2x3))

∀x (x1) = x

∀x (x x−1) = 1).
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A quasi-identity of L0[G] is universal sentence of the form

∀ x

(
k∧

i=1

( si( x) = ti( x)) → (s( x) = t( x))

)
where x is a tuple of variables and the si( x), ti( x), s( x) and t( x) are terms of L0[G].
Every identity is equivalent to a quasi-identity since ∀x (s(x) = t(x)) is equivalent to

∀x, y ((y = y) → (s(x) = t(x))).

In particular, the group axioms are equivalent to quasi-identities.
If G is a group and we let Q0(G) be the set of all quasi-identities of L0 true in G and

Q(G) be the set of all quasi-identities of L0[G] true in G. We view the group axioms as
contained in Q0(G) ⊆ Q(G). We let Th0∀(G) be the set of all universal sentences of L0

true in G and Th∀(G) be the set of all universal sentences of L0[G] true in G. Note that
quantifier free sentences are viewed as special cases of universal sentences. In particular,
the diagram of G, briefly diag(G), consisting of the atomic and negated atomic sentences
of L0[G] true in G is a set of universal sentences of L0[G].

A G-group Γ is a model of the group axioms and diag(G). That is equivalent to the
group Γ containing a distinguished copy of G as a subgroup. A G-polynomial is a group
word on the elements of G and variables. (If you like, an element of the free product
G ∗ ⟨x1, ..., xn; ⟩ for some n.) Note that, modulo the group axioms, every identity of L0

(L0[G] ) is equivalent to one of the form ∀x (w(x) = 1) where w(x) is a group word (G-
polynomial) and every quasi-identity of L0 (L0[G] ) is equivalent to one of the form

∀ x

(
k∧

i=1

( ui( x) = 1) → (w( x) = 1)

)
where the ui(x) and w( x) are group words (G-polynomials).

In this paper by ”ring” we shall always mean commutative ring with multiplicative
identity 1 ̸= 0. Subrings are required to contain 1 and homomorphisms are required to
preserve 1. A ring R is residually-Z provided, given r ∈ R\{0}, there is a homomorphism
R → Z which does not annihilate r. This forces R to have characteristic zero and we identify
the minimum subring of R with Z. Hence, we view R as separated by retractions R → Z. A
ring is locally residually-Z provided every finitely generated subring is residually-Z . Being
locally residually-Z is equivalent to being a model of the quasi-identities of ring theory true
in Z (See [4]).

It was proven in [4] that every model of Q(H)∪diag(H) H-embeds in UT3(R) for some
locally residually-Z ring R. (Conversely every H-subgroup of such a UT3(R) is a model of
Q(H)∪ diag(H).) Here an H-embedding is an embedding which is the identity on H. (The
meanings of H-subgroup and H-homomorphism in the category of H-groups are readily
apparent.)

Let G be a group and g ∈ G. We let CG(g) be the centralizer of g in G. NZCT is the
following universal sentence of L0 :

∀x1, x2, x3, y ((([x2, y] ̸= 1) ∧ ([x1, x2] = 1) ∧ ([x2, x3] = 1)) → ([x1, x3] = 1)) .

A group G satisfies NZCT if and only if CG(g) is abelian for all g ∈ G\Z(G). The following
quasi-identity of L0[H] holds in H.

∀x, z ((([z, a1] = 1) ∧ ([a2, z] = 1)) → ([z, x] = 1)) .
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It follows that, if G is any model of Q(H) ∪ diag(H), then CG(a1) ∩ CG(a2) = Z(G). In
particular, if G additionally satisfies NZCT, then the following universal sentence τ of L0[H]
is a consequence

∀x1, x2
(

(([x2, x1] = 1) ∧ ([a2, x2] = 1) ∧ ([x1, a1] = 1) →
(([x2, a1] = 1) ∨ ([a2, x1] = 1))

)
.

We shall prove in the next section that Q(H) ∪ diag(H) ∪ {τ} axiomatizes Th∀(H).
A primitive sentence of L0[H] is (modulo the group axioms) an existential sentence

of the form ∃ x

∧
i

(pi( x) = 1) ∧ (
∧
j

(qj( x) ̸= 1)

 where the pi( x) and qj( x) are

H-polynomials.
By writing the matrix of an existential sentence in disjunctive normal form one sees that

every existential sentence of L0[H] is equivalent (modulo the group axioms) to a disjunction
of primitive sentences and so holds in an H-group if and only if at least one disjunct does.

Assume momentarily that there is a universal sentence φ of L0[H] which holds in H
but is not a consequence of Q(H) ∪ diag(H) ∪ {τ}. Then its negation ∼ φ must hold in
some model G of Q(H)∪ diag(H)∪ {τ}. Since ∼ φ is equivalent to an existential sentence
of L0[H] there must be a primitive sentence

∃x1, ..., xk

∧
i

(pi( a1, a2, x1, ..., xk) = 1) ∧ (
∧
j

(qj(a1, a2, x1, ..., xk) ̸= 1)


of L0[H] which holds in G but is false in H. Let the assignment xλ 7→ gλ, 1 ≤ λ ≤ k, verify
the above sentence in G. Then the finitely generated H-subgroup G0 = ⟨a1, a2, g1, ...gk⟩ of
G also satisfies the above primitive sentence and, since universal sentences of L0[H] are pre-
served in H-subgroups, G0 is a model of Q(H)∪diag(H)∪{τ}. Hence, if a counterexample
exists, then so would a finitely generated counterexample exist. So it suffices to prove the
result for finitely generated models. We shall find it convenient to prove, more generally,
that the result holds for models G such that the quotient G = G/Z(G) is finitely generated.

3. The Lame Property and the Universal Theory of H

It was shown in [5] using a characterization due to Mal’cev [7] that a model E of Q(H) ∪
diag(H) is of the form UT3(R) for some locally residually-Z ring R if and only if E satisfies
the following universal-existential sentence

σ of L0[H] :

∀x1, x2∃y1, y2
(

([y1, a1] = 1) ∧ ([a2, y2] = 1) ∧ ([x2, x1] = [y2, a1])
∧ ( [x2, x1] = [a2, y1])

)
.

In other words, for each commutator [g2, g1], each of the systems

S

{
[a2, y] = 1

[y, a1] = [g2, g1]

and

T

{
[x, a1] = 1

[a2, x] = [g2, g1]

has a solution in E.
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Mimicking the construction of an existentially closed extension (See e.g. Hodges [H])
we may embed a model G of Q(H)∪ diag(H)∪ {τ} into UT3(R), If we could preserve τ at
each step then, since universal sentences are preserved in direct unions, UT3(R) would also
satisfy τ . If UT3(R) satisfies τ , then R is an integral domain. To see this let (r, s) ∈ R2 and

suppose rs = 0. Let y =

1 r 0
0 1 0
0 0 1

 and x =

1 0 0
0 1 s
0 0 1

. Then [y, x] = 1 and [a2, y] = 1

and [x, a1] = 1. Moreover, [y, a1] =

1 0 r
0 1 0
0 0 1

 and [a2, x] =

1 0 s
0 1 0
0 0 1

. Since UT3(R)

satisfies τ , r = 0 or s = 0 and R indeed is an integral domain.
A residually-Z ring R is ω-residually-Z provided it is discriminated by the family of

retractions R → Z . That is, given finitely many nonzero elements of R, there is a retraction
R → Z which does not annihilate any of them. That is equivalent to R being an integral
domain. Suppose first that R is an integral domain. Let r1, ..., rn be finitely many nonzero
elements of R. Then the product r = r1 · · · rn ̸= 0 and there is a retraction ρ : R → Z
which does not annihilate r so cannot annihilate and of r1, ..., rn. Conversely, if R is ω-
residually-Z and r and s are nonzero elements of R, then there is a retraction ρ : R → Z
such that ρ(r) ̸= 0 and ρ(s) ̸= 0; so, ρ(rs) = ρ(r)ρ(s) ̸= 0 and hence rs ̸= 0 and R must
be an integral domain. From this it follows that a locally residually-Z ring R is locally
ω-residaully-Z if and only if R is an integral domain. So, if UT3(R) satisfies τ , then R is
locally ω-residually-Z .

Given G ≤H UT3(R), G is the direct union lim
→

(G ∩ UT3(R0)) as R0 varies over

the finitely generated subrings of R. Ring retractions R0 → Z induce group retractions
G ∩ UT3(R0) → H. From this it follows that each G ∩ UT3(R0) is discriminated by the
family of group retractions G ∩ UT3(R0) → H and hence each G ∩ UT3(R0) is a model of
Th∀(H). Since universal sentences are preserved in direct unions and G = lim

→
(G∩UT3(R0))

we have that G is a model of Th∀(H). The bottom line is that we would be finished if we
could construct an overgroup UT3(R) in such a way that τ is preserved at each step of the
construction.

Let us forget momentarily about this particular R and consider a possible property that
a representation G ≤H UT3(R) might satisfy.

Definition 3.1. Let G be a model of Q(H) ∪ diag(H) and let G ≤H UT3(R) where R is
locally residually-Z. We say the representation satisfies the Lame Property provided, for

each g =

1 g12 g13
0 1 g23
0 0 1

 ∈ CG(a1) ∪ CG(a2), either g
2
12 + g223 = 0 or g212 + g223 is not a zero

divisor in R.

Lemma 3.2. Given a model G of Q(H) ∪ diag(H) and a representation G ≤H UT3(R)
where R locally residually-Z. The representation satisfies the Lame Property if and only if
it satisfies the conjunction of the following two conditions:

(1.) For all y =

1 y12 y13
0 1 0
0 0 1

 ∈ CG(a2)\Z(G), y12 is not a zero divisor in R.
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(2.) For all x =

1 0 x13
0 1 x23
0 0 1

 ∈ CG(a1)\Z(G), x23 is not a zero divisor in R.

Proof. Suppose the representation satisfies the Lame Property. Let y =

1 y12 y13
0 1 0
0 0 1

 ∈

CG(a2)\Z(G). Then y12 ̸= 0.
The quasi-identity ∀x ((x2 = 0) → (x = 0)) holds in Z ; hence, it is true in R and

y212 ̸= 0. If r ̸= 0 annihilates y12 then r(y212 + y223) = ry212 = 0 contradicting y212 = y212 + y223
is not a zero divisor in R. The contradiction shows that the representation satisfies (1.).
Similarly, the representation satisfies (2.).

Now suppose that representation satisfies (1.) and (2.). Let g =

1 g12 g13
0 1 g23
0 0 1

 ∈

CG(a1) ∪ CG(a2). Z satisfies each of the quasi-identities

∀x, y ((x2 + y2 = 0) → (x = 0)) and

∀x, y (x2 + y2 = 0) → (y = 0)); so,

they must hold in R. Hence, if g212 + g223 ̸= 0, then either g12 ̸= 0 or g23 ̸= 0.
Suppose there were an r ̸= 0 which annihilates g212 + g223. From r(g212 + g223) = 0 we

get (rg12)
2 + (rg23)

2 = r2(g212 + g223) = 0. Hence rg12 = 0 and rg23 = 0. If g12 ̸= 0 (1.)
is contradicted while if g23 ̸= 0 (2.) is contradicted. The contradiction shows that the
conjunction of (1.) and (2,) implies the Lame Property.

We next note that if the representation G ≤H UT3(R) satisfies the Lame Property, then
G satisfies τ .

For suppose [a2, y] = 1 so y =

1 y12 y13
0 1 0
0 0 1

 ∈ CG(a2), [x, a1] = 1 so x =

1 0 x13
0 1 x23
0 0 1

 ∈

CG(a1) and [y, x] =

1 0 y12x23
0 1 0
0 0 1

 = 1 =

1 0 0
0 1 0
0 0 1

. Then y12x23 = 0. But if y12 ̸= 0,

then x23 = 0 otherwise (1.) is contradicted while if x23 ̸= 0, then y12 = 0 otherwise (2.) is
contradicted. It follows that either [y, a1] = 1 or [a2, x] = 1 so τ holds in G. For a fixed
representation G ≤H UT3(R) satisfying the Lame Property is a sufficient condition for τ
to hold in G; however, it is not a necessary condition for G to satisfy τ . (None the less we
shall subsequently see that having at least one representation satisfying the Lame Property
is necessary and sufficient.)

The result (proven in [5]) that every 3-generator model of Q(H)∪ diag(H) is already a
model of the Th∀(G) provides a treasure trove of counterexamples.

Let G be a model of Q(H) ∪ diag(H) and let R be a locally residually-Z ring. We say
that R is appropriate for G provided

(1) G ≤H UT3(R) and
(2) R is generated by the entries of the elements of G.
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Now R = Z×Z = Ze1 + Ze2 where e1 = (1, 0) and e2 = (0, 1) is residually-Z . Consider
the 3-generator subgroup G ≤H UT3(R) generated by

a1 =

1 0 0
0 1 1
0 0 1

 , a2 =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 e1
0 0 1

 .

Since 1 − e1 = e2 , R = Z × Z is generated by the entries of the elements of G. Since
e1e2 = 0, e1 is a zero divisor in R.

Now b ∈ CG(a1)\Z(G) and b23 = e1 is a zero divisor in R. Hence, the representation
violates the Lame Property. Every 3-generator model of Q(H)∪diag(H) is already a model
of Th∀(H). So this G = ⟨a1, a2, b⟩ satisfies τ . Now this G is obtained from H by extending
CH(a1) introducing a new parameter. (It is a rank 1 centralizer extension relative to the
category N2 of 2-nilpotent groups.)

Let θ be an indeterminate over Z . Then the polynomial ring Z[θ] is residually-Z and
we could have just as well embedded this G into UT3( Z[θ] ) as the subgroup generated by

a1 =

1 0 0
0 1 1
0 0 1

 , a2 =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 θ
0 0 1

 .

Since θ is an entry of an element of G, Z[θ] is also appropriate for G. Since Z[θ] is an
integral domain, the representation does satisfy the Lame Property.

Anticipating an application to be used later in this paper, suppose G0 is a model of
Q(H)∪diag(H) and let ai be a free generator of H, i ∈ {1, 2}. Suppose G is obtained from
G0 by extending CG0(ai). That is

G = ⟨G0, t; rel(G0), [t, CG0(ai)] = 1⟩N2 .

Using a big powers argument, we get a discriminating family of retractions G → G0 via{
g 7→ g , g ∈ G0

t 7→ ani , n ∈ Z .

It follows that G is universally equivalent to G0.
Now suppose we fix a model G0 of Q(H)∪diag(H)∪{τ} which admits a representation

G0 ≤H UT3(R) satisfying the Lame Property. Let (g1, g2) ∈ G2
0 and suppose the system

S

{
[a2, y] = 1

[y, a1] = [g2, g1]

has no solution in G0. Let [g2, g1] = z =

1 0 z13
0 1 0
0 0 1

. Let Y be the element

1 z13 0
0 1 0
0 0 1


of UT3(R). Then [a2, Y ] = 1 and [Y, a1] = [g2, g1] so Y /∈ G0.

Let G1 be the subgroup ⟨G0, Y ⟩ of UT3(R). Collecting and simplifying we see a typ-
ical element of G1 has the form uY n [Y,w] where n ∈ Z and (u,w) ∈ G2

0. The ma-

trix representing this element has the form

1 u12 + nz13 ∗
0 1 u23
0 0 1

. Now suppose C =1 c12 + nz13 ∗
0 1 0
0 0 1

 ∈ CG1(a2) and B =

1 0 ∗
0 1 b23
0 0 1

 ∈ CG1(a1). Assume further that
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[C,B] = 1. Then

1 0 (c12 + nz13)b23
0 1 0
0 0 1

 =

1 0 0
0 1 0
0 0 1

 so (c12 + nz13)b23 = 0. Now,

c12+nz13 ̸= 0 and b23 ̸= 0. Moreover, B has the form u[Y,w] with u ∈ CG0(a1) looking like1 0 ∗
0 1 b23
0 0 1

. Since b23 is a zero divisor in R that contradicts that the representation G0

satisfies the Lame Property. Hence, either c12 + nz13 = 0 or b23 = 0 so either[C, a1] = 1 or
[a2, B] = 1 and G1 satisfies τ .

Similarly, if the system

T

{
[x, a1] = 1

[a2, x] = [g2, g1]

has no solution in G0 we can extend to a model of Q(H)∪ diag(H)∪ {τ} in which T has a
solution.

Getting back to G1, suppose the system

T

{
[x, a1] = 1

[a2, x] = [g2, g1]

has no solution in G1. Suppose further that G1 admits a representation G1 ≤H UT3(R)
satisfying the Lame Property. Then we can extend G1 to a model G of Q(H)∪diag(H)∪{τ}
in which T has a solution. We have the chain G0 ≤ G1 ≤ G. G is a model of Q(H) ∪
diag(H) ∪ {τ} in which the system

S ∪ T


[a2, y] = 1
[y, a1] = [g2, g1]
[x, a1] = 1
[a2, x] = [g2, g1]

has a solution. So, if every model G of Q(H)∪diag(H)∪{τ} has at least one representation
satisfying the Lame Property, then G embeds in UT3(R) where R is an integral domain and
we are finished. To prove that every model of Q(H)∪diag(H)∪{τ} admits a representation
satisfying the Lame Property, we need some results from model theory.

Let M be the model class operator. We first paraphrase a result from Bell and Slomson
[1].

Proposition 3.3. Let L be a first order language with equality. Let K be the class of all
Lstructures and let X ⊆ K. Then there is a set S of sentences of L such that X = M(S)
if and only if X is closed under isomorphism and ultraproducts and K\X is closed under
ultraprowers.

Remark 3.4. The proof in [1] needed the Generalized Continuum Hypothesis. In view of
Shelah’s [10] improvement of Keisler’s ultrapower theorem that hypothesis may be omitted.

The next result may be found in Hodges [H].

Proposition 3.5. Let L be a first order language with equality. Let T be a set of sentences
of L. Let T∀ be the set of all universal sentences of L which are logical consequences of T .
Then M(T∀) consists of all L-substructures of models of T .
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Using Proposition 1, a striaghtforward but tedious verification reveals that the class
of all models of Q(H) ∪ diag(H) ∪ {τ} which admit a representation satisfying the Lame
Property is first order. Moreover, since this class is closed under H-subgroups, it has (as
an application of Proposition 2) a set Φ of universal axioms in L0[H]. Now M(Q(H) ∪
diag(H)∪ {τ}) ⊇ M(Φ). We would be finished if we could prove equality. It will suffice to
establish the result for finitely generated models. We shall prove the result more generally
for models G of Q(H) ∪ diag(H) ∪ {τ} such that the quotient G = G/Z(G) is finitely
generated.

Theorem 3.6. Every model of Q(H) ∪ diag(H) ∪ {τ} admits a representation satisfying
the Lame Property.

Corollary 3.7. Q(H) ∪ diag(H) ∪ {τ} is an axiomatization for Th∀(H).

Corollary 3.8. Q(H) ∪ diag(H) ∪ {NZCT} is an axiomatization for Th∀(H).

Proof of Theorem 3.6. Let G be a model of Q(H) ∪ diag(H) ∪ {τ}. We may assume with-
out loss of generality that the quotient G = G/Z(G) is finitely generated. Let Ci =
CG(ai) /Z(G), i = 1, 2. Since ⟨ai ⟩ = ⟨aiZ(G)⟩ ⊆ Ci, Ci has finite rank at least 1, i = 1, 2.

Thus, rank(C1) + rank(C2) ≥ 2. Define the C-rank of G to be

rank(C1) + rank(C2)− 1.

The proof will proceed by induction on the C-rank.
Suppose first that the C-rank of G is 1. That forces

rank(C1) = 1 = rank(C2)

and Ci = ⟨ai ⟩ = ⟨aiZ(G)⟩, i = 1, 2. Let G ≤H UT3(R) be any representation where R is
locally residually-Z .

It follows from the above that every element of CG(a2)\Z(G) looks like

1 m ∗
0 1 0
0 0 1


wherem ∈ Z\{0} and every element of CG(a1)\Z(G) looks like

1 0 ∗
0 1 n
0 0 1

 where n ∈ Z\{0}.

Now, for each k ∈ Z\{0}, the quasi-identity ∀x ((kx = 0) → (x = 0)) holds in Z .
Hence, these quasi-identities hold in R and consequently every representation of G satisfies
the Lame Property. The initial step of the induction has been established.

Now suppose G has C-rank n > 1 and the result has been established for models with
C-rank k with 1 ≤ k < n.

Now let G ≤H UT3(R) be any representation of G where R is locally residually-Z . Let

us extend G to Ĝ by adjoining the elements

1 0 r
0 1 0
0 0 1

 as r varies over R. Since τ depends

on the (1, 2) and (2, 3) entries only and since Ĝ has the same C-rank as G, we may replace

G with Ĝ. This causes no harm since universal sentences are preserved in subgroups; so G

will be a model of Φ whenever Ĝ is.
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Since the C-rank of Ĝ is greater than 1 at least one of

Ci = CĜ(ai)/Z(Ĝ) , i = 1, 2

must have rank at least 2. We may assume rank(C2) = m ≥ 2. Choose elements

a2, b1, ..., bm−1 ∈ C
Ĝ
(a2) which project modulo Z(Ĝ) to a basis for C2 . Now let N be

the subgroup ⟨bm−1⟩ · Z(Ĝ) of Ĝ . Since [Ĝ, Ĝ] ≤ Z(Ĝ) ≤ N , N is normal in Ĝ and

Ĝ/N is abelian. Let T be a transversal for N in Ĝ so that every element g is uniquely
expresses in the form t(g)υ(g) where t(g) ∈ T and υ(g) ∈ N . Assume further that, for all

(p, q, z) ∈ Z2 × Z(Ĝ), t(ap1a
q
2z) = ap1a

q
2 and that t(x) = 1 for all x ∈ N .

Let G0 be the subgroup of Ĝ generated by the coset representatives of N in Ĝ together

with Z(Ĝ) . Since bm−1 is killed off the C-rank of G0 is less than that of Ĝ and so, by
inductive hypothesis, G0 is a model of Φ.

Examining the general form of a matrix in Ĝ and setting that guy equal to the identity

matrix, we see that, modulo the law [x1, x2, x3] = 1, the only relations in Ĝ are consequences

of the relations in G0 and the relations [CG0(a2), bm−1] = 1. That is, Ĝ is the free rank 1

extension of CG0(a2) relative to N2 and hence G0 and Ĝ are universally equivalent. Then Ĝ

is a model of Φ since G0 is. Since G ≤ Ĝ and universal sentences are preserved in subgroups,
G is a model of Φ. That completes the induction and proves the theorem.

4. The Theory in the Base Language

We wish to ponder whether or not Q0(H) ∪ {NZCT} axiomatizes Th0∀(H). To that end
let G0 be a model of Q0(H)∪{NZCT}. We may assume G0 is finitely generated. Suppose
that G0 is abelian. Then, since models of Q0(H) are torsion free, G0 is free abelian of

finite rank r. Choose a positive integer n such that

(
n
2

)
≥ max{r, 2}. If G = Fn(N2)

then [G,G] is free abelian of rank

(
n
2

)
. It follows that G0 embeds in G . So every

universal sentence of L0 true in G must also be true in G0. But G is universally equivalent
to H. Therefore G0 is a model of Th0∀(H). So it now suffices to assume G0 is a finitely
generated nonabelian model of Q0(H) ∪ {NZCT}. A consequence of a result of Grätzer
and Lasker [6] is that the quasivariety generated by H consists of all groups isomorphic to a
subgroup of a direct product of a family of ultrapowers of H. View H as UT3(Z) and taking
corresponding direct product of ultrapowers of Z we get a ring R such that G0 embeds in
UT3(R). Since quasi-identities are preserved in direct products and ultrapowers, R is a
model of the quasi-identities true in Z. That is R is locally residually-Z. Further we may
take R to be generated by the entries of a fixed finite set of generators for G0. Thus, R may
be taken finitely generated. Therefore R is residually-Z and so separated by the family of
retractions R → Z. Let G be the subgroup ⟨G0, H⟩ of UT3(R). The retractions R → Z
induce group retractions G → H and these separate G. It follows that G is a model of
Q(H) ∪ diag(H). Let us keep this G in mind as we move on.

Let us say a group is (G0, H)-group if it contains a distinguished copy of each of G0 and
H. The meanings of (G0, H)-subgroup and (G0, H)-homomorphism are readily apparent.
A (G0, H)-ideal is the kernel of a (G0, H)-homomorphism. Equivalently, a (G0, H)-ideal in
a (G0, H)-group G is a subgroup K normal in G such that K ∩G0 = {1} = K ∩H.
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Suppose I is a nonempty index set and (Gi)i∈I is a family of (G0, H)-groups indexed

by I. Let G be the direct product
∏
i∈I

Gi. We have the diagonal embeddings

α : G0 → G

α(g)(i) = g for all g ∈ G0 , i ∈ I

and

β : H → G

β(h)(i) = h for all h ∈ H , i ∈ I.

We view G as a (G0, H)-group using these diagonal embeddings. Let
∐

be the N2 free

product (See [8]). Let G1, G2, and G be 2-nilpotent groups. Let φi : Gi → G be a

homomorphism i − 1, 2. Then there is a unique homomorphism φ : G1

∐
G2 → G such

that
φ |Gi= φi , i = 1, 2.

Getting back to G and letting Γ = G0

∐
H we see there is a unique (G0, H)-homomorphism

φ : Γ → G . Note φ is surjective since G0 and H generate G . If K = Ker(φ), then K is
a (G0, H)-ideal in Γ such that Γ/K is a model of Q(H). Hence the set K of all (G0, H)-

ideals, K, in Γ such that Γ/K is a model of Q(H) is nonempty. Let K0 =
⋂
K∈K

K. Let

UH(G0) = Γ/K0.
We call UH(G0) the universal H-extension of G0. We claim that UH(G0) is a (G0, H)-

group which is a model of Q(H) and that if G is any (G0, H)-group which is a model of
Q(H), then there is a unique (G0, H)-homomorphism UH(G0) → G. Put another way, we
claim that UH(G0) is an initial object in the category whose objects are (G0, H)-groups
which are models of Q(H) and whose morphisms are (G0, H)-homomorphisms.

From K ∩G0 = {1} = K ∩H for all K ∈ K we get K0 ∩G0 = 1 = K0 ∩H as K0 ≤ K
for all K ∈ K . Thus, K0 is a (G0, H)-ideal and UH(G0) is a (G0, H)-group.

We get a (G0, H)-homomorphism

φ : Γ →
∏
K∈K

(Γ/K) via

φ(γ) = (γK)K∈K for all γ ∈ Γ. K0 = Ker(φ). It follows that UH(G0) isomorphic
to the image of φ. Since quasi-identities of L0[H] are preserved in direct products and
H-subgroups, UH(G0) is a model of Q(H).

Now suppose G is any (G0, H)-group which is a model of Q(H). Since Γ = G0

∐
H

we get a unique homomorphism π : Γ → G which restricts to the identity on each of G0

and H. Then Ker(π) ∈ K and π induces π : UH(G0) → G. Since every homomorphism

is determined by its effect on a generating set and Γ = G0

∐
H, π is unique. Our claims

have been established.

Question 4.1. Is NZCT preserved in UH(G0)?

If so, UH(G0) would be a model of Th∀(H) and hence a model of Th0∀(H). Since
universal sentences are preserved in subgroups, we would have G0 a model of Th0∀(H).

We observe that
G0 ∩ Z(UH(G0)) ≤ Z(G0).
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We further observe that Z(G0) coinciding with G0∩Z(UH(G0)) is a necessary condition for
Question 4.1 to have a positive answer. Recall we are taking G0 nonabelian. Let g1 and g2
be noncommuting elements of G0 and g ∈ Z(G0)\(G0 ∩ Z(UH(G0))), then since g1 and g2
each commute with g /∈ Z(UH(G0)) , NZCT would be violated.

Question 4.2. Is Z(G0) = G0 ∩ Z(UH(G0))?

5. Questions

Let c ≥ 2 be an integer. Let r = max{2, c− 1}. Let s be any integer such that s ≥ r. Let
G = Fs(Nc). Then Fω(Nc) is discriminated by the family of retractions Fω(Nc) → G. It
follows that the Fn(Nc) have the same universal theory relative to L0 for all n ≥ r and that
the Fn(Nc) have the same universal theory relative to L0[G] for all n ≥ s (See [GS 1]). We
let Sc be the set of all universal sentences of L0 true in Fn(Nc). Since Fn(Nc) ≤ Fr(Nc) for
all 0 ≤ n ≤ r and universal sentences are preserved in subgroups, Sc is actually the set of
all universal sentences of L0 true in every free c-nilpotent group.

For each integer n ≥ 0 we define CT (n) to be the following universal sentence of L0.

∀x1, x2, x3, w1, ..., wn ((([w1, ..., wn, x2] ̸= 1) ∧ (([x1, x2] = 1) ∧ ([x2, x3] = 1))

→ ([x1, x3] = 1)).

The interpretation of CT (n) in any group G is that the relation of commutativity is transi-
tive on G\Zn(G) where Zn(G) is the n-th term of the upper central series of G.

Equivalently, it asserts that the centralizer of any element g ∈ G\Zn(G) is abelian. It
was shown in [2] that the free c-nilpotent groups satisfy CT (c−1). Questions 5.1–5.4 below
are also due to A.G. Myasnikov.

Question 5.1. Does Q(H) ∪ {NZCT} axiomatize S2 = Th0∀(H)?

A positive answer to Question 4.1 would imply a positive answer to Question 5.1.

Question 5.2. Let s ≥ 2 and let G = Fs(N2). Does Q(G)∪diag(G)∪{NZCT} axiomatize
Th∀(G)?

More generally -

Question 5.3. Let c ≥ 2 and r = max{2, c−1}. Let G = Fn(Nc). DoesQ0(G)∪{CT (c−1)}
axiomatize Sc?

Question 5.4. Let c ≥ 2 and s ≥ r = max{2, c − 1}. Let G = Fs(Nc). Does Q(G) ∪
diag(G) ∪ {CT (c− 1)} axiomatize Th∀(G)?

Question 5.5. Let θ be an indeterminate over Z . Must every finitely generated model of
Th∀(H) H-embed in UT3(Z[θ])?
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