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Abstract. We consider a class of groups, called groups of F-type, which includes some

known and important classes like Fuchsian groups of geometric rank ě 3, surface groups of

genus ě 2, cyclically pinched one-relator groups and torus-knot groups, and prove algebraic

and geometric properties of these groups.

1. Introduction

A group G is of of F-type, if it admits a presentation of the following form

G “ xa1, . . . , an | ae11 “ ¨ ¨ ¨ “ aenn “ Upa1, . . . , apqV pap`1, . . . , anq “ 1y

where n ě 2, ei “ 0 or ei ě 2, for i “ 1, . . . , n, 1 ď p ď n ´ 1, Upa1, . . . , apq is a cyclically

reduced word in the free product on a1, . . . , ap which is of infinite order and V pap`1, . . . , anq

is a cyclically reduced word in the product on ap`1, . . . , an which is of infinite order. With p

understood we write U for Upa1, . . . , apq and V for V pap`1, . . . , anq.

Now, if U “ a˘1
1 then e1 must equal zero since we assume that U has infinite order. In this

case, G reduces to

G “ xa1, . . . , an | ae22 “ ¨ ¨ ¨ “ aenn “ 1y

which is a free product of cyclic groups. Therefore if p “ 1 (or p “ n´ 1) we restrict groups

of F-type to those where U “ am1 (or V “ amn ) with m ě 2.
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It follows then that in all cases the group G decomposes as a non-trivial free product with

amalgamation:

G “ G1 ˚A G2

with G1 ‰ A ‰ G2 where the factors are free products of the cyclics

G1 “ xa1, . . . , ap | ae11 “ ¨ ¨ ¨ “ a
ep
p “ 1y,

G2 “ xap`1, . . . , an | a
ep`1

p`1 “ ¨ ¨ ¨ “ aenn “ 1y,

and

A “ xU´1y “ xV y.

We first mention the observation that a group of F-type is coherent, that is, finitely generated

subgroups are finitely presented. Observe that finitely generated subgroups of G1 and G2,

respectively, are finitely related and every subgroup of A is finitely generated, in fact cyclic

because A is cyclic. Hence, G is coherent by [23].

In what follows we make a further restriction. Suppose UV omits some generator. For

instance, suppose that UV does not involve a1. Then G is a free product H1 ˚H2, where

H1 “ xa1 | ae11 “ 1y

and

H2 “ xa2, . . . , an | ae22 “ ¨ ¨ ¨ “ aenn “ UV “ 1y.

This does not affect the validity of the upcoming results in the next sections. Hence, we may

assume that UV involves all the generators. One could assume that it would be convenient

to have U and V of minimal length in their respective orbits under Nielsen transformations

but unfortunately in doing so, we eventually lose the property that G1 and G2 are free

products on the sets of the new generators, especially if ei ě 2 for some i. It is important for

our purposes that the factors G1 and G2 are free products on exactly the given generators,

respectively.

In the following sections we consider essentially faithful representations in general and for

groups of F-type and discuss many consequences of this. Then we classify the hyperbolic

groups of F-type. The hyperbolic groups of F-type have a faithful representation into

PSLp2,Rq which gives interesting consequences for groups of F-type. Then we give some

further algebraic properties and finally some quotients of groups of F-type.

This paper is in most parts a survey but contains also new results. The new results often

appear in combination with already known results and are given together in one statement.

These include for instance Theorem 3.2, Corollaries 3.3 and 3.5, and Theorems 4.17 to 4.19.

Many results have appeared in different publications but it would be convenient to have the

known results in just one place. The reason is that groups of F-type still form an interesting
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class of groups, especially in connection with covering space theory and algebraic topology.

We have mentioned some of the many interesting examples in the abstract of this paper. As

background for the used notations, definitions, and results one may take [15], [25], and [32].

Groups of F-type were originally introduced in [16] and [17]. A reasonable discussion can be

found in [19].

Sadly, our coauthor and friend Ben Fine died during the final preparation of the paper. The

remaining two authors dedicate the paper to the memory of Ben and to all the work that he

inspired.

2. Essential Representations and Algebraic Consequences

We say that a linear representation ρ over a field of characteristic 0 is an essentially faithful

representation if ρ is finite-dimensional with torsion-free kernel. In the following, we give

some historic remarks on the notion of essentially faithful representations. The term was

introduced in 1996 by B. Fine (see [18]). Earlier, in 1985, he introduced the weaker concept

of essential representations. Suppose G is a group with presentation

G “ xa1, . . . , an | ae11 “ ¨ ¨ ¨ “ aenn “ Rm1
1 “ ¨ ¨ ¨ “ Rmk

k “ 1y

where ei “ 0 or ei ě 2 for i “ 1, . . . , n, mj ě 1 for j “ 1, . . . , k, and each Rj is a cyclically

reduced word in the free product of the cyclic groups xa1y, . . . , xamy of syllable length at

least two.

A representation ρ : G Ñ Linear Group over a field of characteristic zero is an essential

representation if for each i the image ρpaiq is of infinite order if ei “ 0 or of order ei if ei ě 2,

and for each j the image ρpRjq has order mj . This last term was used by B. Fine, J. Howie,

R. Hidalgo, N. Kopteva, F. Levin, G. Rosenberger, R. Thomas, E. B. Vinberg and others in

their work on generalized modular groups, generalized triangle groups, generalized tetrahe-

dron groups, one-relator quotients of free products with amalgamation, groups of special

NEC-type and Coxeter groups. In their paper [3], G. Baumslag, J.W. Morgan and P. Shalen

described this phenomenon for generalized triangle groups as special representations.

We first give some general statements and show then that a group of F-type has an essentially

faithful representation into PSLp2,Cq.

Proposition 2.1. Let G be a finitely generated group. Then G admits an essentially faithful

representation if and only if G is virtually torsion-free.

Proof. Suppose G is finitely generated and ρ : G Ñ Linear Group is an essentially faithful

representation. Since G is finitely generated, ρpGq is a finitely generated linear group. From

a result of Selberg, see [30], ρpGq is then virtually torsion-free. Let H be a torsion-free
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normal subgroup of ρpGq of finite index and let H˚ be the pullback of H in G. H˚ has finite

index in G.

If g ‰ 1 has finite order then ρpgq has exactly the same order since ρ has torsion-free kernel.

Therefore g cannot be in H˚ since its image would then be an element of finite order in the

torsion-free group H. Thus H˚ must be torsion-free and G is virtually torsion-free.

Conversely, suppose G is virtually torsion-free. Let H be a torsion-free subgroup of G of

finite index. The intersection of the conjugates of H in G is a normal subgroup of finite index.

Hence, G must contain a torsion-free normal subgroup H˚ of finite index. Choose a faithful

finite-dimensional representation ρ˚ of the finite group G{H˚. The composition of this with

the natural homomorphism from G to G{H˚ will give the desired representation.

This has two immediate relations to the following.

Proposition 2.2. 1. Let G be a finitely generated group. Then G is residually finite if

and only if for each g P G, g ‰ 1, there exists a non-trivial linear representation ρ of G

with ρpGq ‰ t1u.

2. Let G be a finitely generated group with a balanced representation

G “ xa1, . . . , an | Rm1
1 “ ¨ ¨ ¨ “ Rmn

n “ 1y

where each Ri is a non-trivial cyclically reduced word in the free product on ta1, . . . , anu.

If at least one mj ě 2, then G is non-trivial.

For Proposition 2.2.1 there is nothing to show. It is a consequence of the Theorem of

A. Malcev, see [26]. We just mention this for completeness.

We now give a proof for Proposition 2.2.2.

Proof. Assume that mn ě 2. Consider the group

G˚ “ xa1, . . . , an | Rm1
1 “ ¨ ¨ ¨ “ R

mn´1

n´1 “ 1y

where m1, . . . ,mn´1 ě 1. Its Abelianization has torsion-free rank at least 1. If we adjoin

Rmn
n with mn ě 2 to the Abelianization, the resulting Abelian group is non-trivial.

We now show that groups of F-type admit an essentially faithful representation into PSLp2,Cq.

More concretely, we show the following.

Theorem 2.3. Let G be a group of F-type. Then G has a representation ρ : G Ñ PSLp2,Cq

such that ρ|G1 and ρ|G2 are faithful.
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Further, if neither U nor V is a proper power then G has a faithful representation in

PSLp2,Cq.

Proof. Choose faithful representations

ρ1 : G1 Ñ PSLp2,Cq and ρ2 : G2 Ñ PSLp2,Cq

such that

ρ1pU´1q “

˜

t1 0

0 t´1
1

¸

and ρ2pV q “

˜

t2 0

0 t´1
2

¸

where t1 and t2 are transcendental. This may be done since U and V both have infinite

order.

If both G1 and G2 are cyclic, then we may choose ρpGq to be a cyclic group. Now, let G1 or

G2 be non-cyclic. Then there exists an irreducible representation from G in PSLp2,Cq. We

have that each of the n matrices have at least two degrees of freedom with the trace and

determinant being specified.

Therefore, from the work of M. Culler and P. Shalen, see [10], or also from [21] and [28] in

a different setting, the dimension of the character space, that is, the representation space

modulo conjugation, of G in PSLp2,Cq is at least 2n´ 1 ´ 3 “ 2n´ 4 which is positive for

n ě 3. Here, the ´1 represents a possible additional conjugation of G1 or G2 using the

fundamental theorem of algebra. This, especially, implies that we may choose ρ1 and ρ2

such that t1 “ t2. Now define ρ : G Ñ PSLp2,Cq via ρi “ ρ|Gi for i “ 1, 2.

This gives the desired representation of the theorem. Further if neither U nor V is a proper

power, the above construction leads to the existence of a faithful representation of G because

ρpgq, g P G1zxUy, and ρpUq have no common fixed point, considered as a linear fractional

transformation, analogously for G2 and V . This gives the result that G has a faithful

representation in PSLp2,Cq.

We give the following consequence of Theorem 2.3.

Corollary 2.4. Let G be a group of F-type. Then G admits an essentially faithful represen-

tation into PSLp2,Cq.

We note that if both U and V are proper powers then there is no faithful representation in

PSLp2,Cq. If U “ Uα
1 , α ě 2, and V “ V β

1 , β ě 2, then ρpU1q and ρpV1q commute but U1

and V1 do not commute.

If A and B “ Ak, |k| ě 2, are elements of infinite order in PSLp2,Cq, then they have the

same fixed points, considered as linear fractional transformations, and hence commute.



5:6 B. Fine, G. Rosenberger and L. Wienke Vol. 16:1

In the following corollary, we describe some straightforward algebraic consequences which

we get from the essentially faithful representation of a group of F-type into PSLp2,Cq in

Corollary 2.4.

Corollary 2.5. Let G be a group of F-type. Then

1. G is virtually torsion-free.

2. If neither U nor V is a proper power then G is residually finite and thus Hopfian.

3. (i) If ei ě 2 then ai has order exactly ei.

(ii) Any element of finite order in G is conjugate to a power of some ai.

(iii) Any finite subgroup is cyclic and conjugate to a subgroup of some xaiy.

(iv) Any Abelian subgroup is cyclic or free Abelian of rank 2.

We remark that Corollary 2.5.1 is follows directly from Corollary 2.4. Corollary 2.5.2 is a

consequence of A. Malcev’s Theorem [26] and Corollary 2.5.3 follows straightforward from

the Nielsen cancellation method in free products with amalgamation as described in [15],

see also Theorem 3.2 for a more general situation.

The next result (Corollary 2.7) is concerned with the Tits alternative, that is, a group

satisfies the Tits alternative if it either contains a free subgroup of rank 2 or is virtually

solvable. We use for the Tits alternative some simple facts.

Remark 2.6. 1. A subgroup H of PSLp2,Cq is elementary if the commutator of any two

elements of infinite order has trace 2; or equivalently, G is elementary if any two elements

of infinite order, regarded as linear fractional transformations, have at least one common

fixed point. A non-elementary subgroup contains a free subgroup of rank two. Hence, if

G is a group of F-type and ρ : G Ñ PSLp2,Cq an essentially faithful representation such

that ρpGq is non-elementary, then G has a free subgroup of rank 2.

2. If G “ xa1, a2 | ap1 “ aq2 “ 1y with 2 ď p, q and p` q ě 5 then G contains a free subgroup

of rank 2.

More details can be found in [15]. We now give the following reasoning. In many cases we get

representations ρ : G Ñ PSLp2,Cq with ρpGq non-elementary. Then we have Corollary 2.7.

If each time ρpGq is elementary then we may apply Remark 2.6.2. or we may consider factor

groups. For instance, let

G “ xa, b, c | b2 “ c2 “ aspbcqt “ 1y
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with s ą 2 or t ě 2. Then G has the factor group

G “ xa, b, c | as “ b2 “ c2 “ pbcqt “ 1y

which certainly has a free subgroup of rank 2. In an analogous manner, we may consider the

remaining groups.

Corollary 2.7. Let G be a group of F-type. Then either G has a free subgroup of rank 2 or

is solvable and isomorphic to a group with one of the following representations:

(1) H1 “ xa, b | a2b2 “ 1y,

(2) H2 “ xa, b, c | a2 “ b2 “ abc2 “ 1y, and

(3) H3 “ xa, b, c, d | a2 “ b2 “ c2 “ d2 “ abcd “ 1y.

From our previous result we get a close tie between the existence of non-Abelian free

subgroups and SQ-universality. Recall that a group H is SQ-universal if every countable

group can be embedded isomorphically as a subgroup of a quotient of H. SQ-universality is

related to the concept of large groups (in the sense of S. Pride).

A large group is a group with a finite index subgroup that maps onto the free group F2 of

rank 2. We know that F2 is SQ-universal, see for instance [15]. Now in [27], P.M. Neumann

showed the following. If G is a subgroup of finite index in a group G, then G is SQ-universal

if and only if H is SQ-universal. Hence, altogether, large groups are SQ-universal.

Theorem 2.8. Let G be a group of F-type. If G is not solvable then G is large. In particular,

a group of F-type is either SQ-universal or solvable.

Proof. Suppose G is not solvable. We may assume without loss of generality that each

ei ě 2. Let ρ : G Ñ PSLp2,Cq be an essentially faithful representation, and let N be a

normal torsion-free subgroup of finite index in ρpGq. Let π be the canonical epimorphism

from ρpGq onto the finite group ρpGq{N . Now consider

X “ xa1, . . . , an | ae11 “ ¨ ¨ ¨ “ aenn “ 1y.

There is a canonical epimorphism ε : X Ñ G. Consider the sequence

X
ε // G

ρ
// ρpGq

π // ρpGq{N.

This yields an epimorphism ψ : X Ñ ρpGq{N . Let Y “ kerpψq. Then Y is a normal subgroup

of finite index j in X, and Y X xaiy “ t1u for i “ 1, . . . , n. Then by the Kurosh theorem Y

is a free group of finite rank r. The finitely generated free product of cyclic groups Y may

be considered as a Fuchsian group of finite hyperbolic area.
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From the Riemann-Hurwitz formula we have

j

ˆ

n´ 1 ´

ˆ

1

e1
` ¨ ¨ ¨ `

1

en

˙˙

“ r ´ 1.

Therefore we have

r “ 1 ´ j

ˆˆ

1

e1
` ¨ ¨ ¨ `

1

en

˙

´ n` 1

˙

.

The group G is obtained from X by adjoining the additional relation UV “ 1 and thus

G “ X{K where K is the normal closure of UV in X. Since K Ă Y the factor group Y {K

may be regarded as a subgroup of some finite index j in G, and using the Reidemeister-

Schreier method, Y {K can be defined on r generators and j relations. Then the deficiency

of this presentation is given by

d “ r ´ j “ 1 ´ j

ˆˆ

1

e1
` ¨ ¨ ¨ `

1

en

˙

´ n` 2

˙

“ 1 ` j

ˆ

n´ 2 ´

ˆ

1

e1
` ¨ ¨ ¨ `

1

en

˙˙

.

If n ě 5 or n “ 4 and at least one ei ‰ 2, then d ě 2. It follows then from [4] that G

contains a subgroup of finite index which maps onto a free group of rank 2. Hence, G is

large and therefore SQ-universal. Next suppose n “ 4 and all ei “ 2. Then necessarily p “ 2

and U “ pa1a2qs, V “ pa3a4qt with |s|, |t| ě 1. Since G is non-solvable, then without loss

of generality we may assume that s ě 2 and t ě 1. Then G has as a factor group the free

product

G “ xa1, a2, a3 | a21 “ a22 “ pa1a2qs “ a23 “ 1y.

The group G has as a normal subgroup of index 2 a group that is isomorphic to

xx, y, z | xs “ y2 “ z2 “ 1y.

Therefore, G and hence G also has a subgroup of finite index mapping onto a free group

of rank 2. If n “ 3 then the result follows by a similar case-by-case consideration, see [19,

Chapter 8].

One of the most powerful techniques in the study of Fuchsian groups is the Riemann-Hurwitz

formula relating the Euler characteristic of the whole group to that of a subgroup of finite

index.

The concept of a rational Euler characteristic is extended to more general finitely presented

groups. Further, these general rational Euler characteristics satisfy the Riemann-Hurwitz

formula. For the general development of group homology and Euler characteristic we refer

to [6].
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Theorem 2.9. Let G be a group of F-type. Then G has a rational Euler characteristic χpGq

given by

χpGq “ 2 `

n
ÿ

i“1

ai,

where ai “ ´1 if ei “ 0 and ai “ ´1` 1
ei

if ei ě 2. If |G : H| ă 8 then χpGq is defined and

χpHq “ |G : H| ¨ χpGq. In addition, G then is of finite homological type WFL, that is, G is

virtually torsion-free and for every torsion free subgroup of finite index Z admits a finite free

resolution over the group ring ZG, and G has virtual cohomological dimension vcdpGq ď 2.

Proof. Since G is virtually finite we can apply the techniques of K. Brown, see [6], to get an

Euler characteristic for G by the formula

χpGq “ χpG1q ` χpG2q ´ χpAq.

Recall that χpHq is defined if H is a free product of cyclics. Since A is infinite cyclic we

have χpAq “ 0. Therefore χpGq “ χpG1q ` χpG2q. G1 and G2 are free products of cyclic

groups, so we can apply the computation rules for the free products, and we get

χpGq “ 2 `

n
ÿ

i“1

αi

where αi “ ´1 if ei “ 0 and αi “ ´1 ` 1
ei

if ei ě 2. We note that the Euler characteristic of

a group of F-type can be zero. In fact, for instance, χpGq “ 0 if n “ 2. Now, from Section

7.6 in [6], we get that G is of finite homological type WFL with vcdpGq ď 2.

3. Additional Algebraic Results for Groups of F-Type

The first two results follow by a straightforward application of the Nielsen cancellation

method in free products with amalgamation, see [9] and [15] for a discussion of the Nielsen

cancellation method.

Theorem 3.1 (Freiheitssatz for groups of F-type). Let G be a group of F-type. Suppose

that UV involves all the generators. Then

1. Any subset of pn´ 2q-many of the given generators generates a free product of cyclics of

the obvious orders.

2. If both U and V are proper powers in the respective factors G1 and G2, then any subset

of pn´ 1q-many of the given generators generates a free product of cyclics of the obvious

orders.

Theorem 3.2. Let G be a group of F-type and let H be a non-cyclic two-generator subgroup

of G. Then H is conjugate in G to a subgroup xx, yy satisfying one of the following conditions:
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(1) xx, yy is a free product of cyclic groups.

(2) xt is in xUy “ xV y for some natural number t and y´1xty is in xa1, . . . , apy or y´1xty

is in xap`1, . . . , any.

We could also prove Theorem 3.2 differently using [23].

Recall that a subgroup K of H is malnormal in H provided gKg´1 XK “ t1u unless g P H.

If G is a group of F-type then xUy “ xV y is malnormal in G if neither U nor V is a proper

power or is conjugate to a word of the form xy for elements x, y of order 2.

Since non-cyclic two-generator subgroups of the free products of cyclic groups are free

products of two cyclic groups we get the following corollary.

Corollary 3.3. Let G be a group of F-type. Suppose further that xUy “ xV y is malnormal

in G. Then any two-generator subgroup of G is a free product of cyclics, and rankpGq ě 3.

Remark 3.4. In Subsection 3.5.4 of [15] we just gave a list of properties of groups of F-type.

Unfortunately, the last property is not correct as stated at this place. We just forgot to add

that xUy “ xV y is malnormal in G. The correct statement is given in [15, Corollary 1.5.20].

Indeed, the malnormality of xUy “ xV y in G is important. For instance, the following groups

of F-type

xa1, a2, a3, a4 | a21 “ a22 “ a23 “ a34 “ a1a2a3a4 “ 1y

and

xa1, a2, a3 | a21 “ a32 “ a1a2a
2
3 “ 1y

are two-generator groups. These examples are considered in [15].

We may extend Corollary 3.3 easily to the following.

Corollary 3.5. Let G be a group of F-type and UV involve all the generators. Suppose

further that p ě 3, and n ´ p ě 3, and that xUy “ xV y is malnormal in G. Then any

three-generator subgroup of G is a free product of cyclics.

Proof. Let x, y, z P G. If xx, y, zy is already of rank two there is nothing to show. Hence,

let rankpxx, y, zyq “ 3. Using the Nielsen cancellation method as described in Section 1.5 of

[15] we finally assume, without loss of generality, that one of the following two cases holds:

a) x, y, z P xa1, . . . , apy “ G1,

b) x, y P xa1, . . . , apy “ G1 with z R G2.
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In case a) we are done. Now, let x, y P G1 and z R G2. We consider the subgroup xG1, zy.

We may assume that z has the normal form

z “ µ1µ2 . . . µk,

k ě 1 and µ1, µk P G2zxV y. But then xy, x, zy must be a free product of cyclics because

n´ p ě 3.

If neither U nor V is a proper power, then from Theorem 2.3, G is both residually finite

and Hopfian. This holds in general for groups of F-type. Recall that a group H is conjugacy

separable if given any non-trivial g, h P G that are not conjugate then there exists a finite

quotient H˚ of H where images of g and h are still not conjugate. Conjugacy separability

implies residual finiteness.

From work of R. B. J. F. Allenby in [2] we get that a group of F-type is conjugacy separable.

Allenby actually proves the following.

Let

G “ xa1, . . . , an | ae11 “ ¨ ¨ ¨ “ aenn “ pUV qm “ 1y,

where n ě 2, ei “ 0 or ei ě 2, 1 ď p ď n ´ 1, U “ Upa1, . . . , apq a non-trivial cyclically

reduced word in the free product on a1, . . . , ap, V “ V pap`1, . . . , anq a non-trivial cyclically

reduced word in the free product on ap`1, . . . , an, and m ě 2. Then G is conjugacy separable.

However, in this proof m ě 2 is only used in the case where either U or V has finite order

in the respective free product on the generators which they involve. In a group of F-type U

and V are assumed to have infinite order so the result goes through. Hence, we have the

following.

Theorem 3.6. A group of F-type is conjugacy separable and, hence, residually finite and

Hopfian.

A detailed proof can be found in [19]. Recall that a group H is subgroup separable or LERF

(locally extended residually finite) if given any subgroup K of H and any element g not in

K there exists a subgroup K˚ of finite index in H such that K is in K˚ and g is not in K˚.

From work of M. Aab and G. Rosenberger, see [1], we can deduce that groups of F-type are

subgroup separable. Details can be found in [15].

Theorem 3.7. A group of F-type is subgroup separable.

C.Y. Tang, see [31], considered a class of groups which contains the groups of F-type.

Theorem 3.8. A group of F-type has solvable generalized word problem, and hence, solvable

word problem.
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Recall that the generalized word problem is the following. Let H “ xX | Ry be a finite

presentation and W a finite set of words tw1, . . . , wmu in X. Let K be the subgroup of G

generated by W . Given a word v in X, can one decide whether or not v is in K? From

Theorem 4.6 in [32] we see that groups of F-type have solvable conjugacy problem. The

applied technique also answers the power conjugacy problem for groups of F-type, that is,

given two elements to determine if a power of one is conjugate to a power of the other.

Hence, we have the following.

Theorem 3.9. Groups of F-type have both solvable conjugacy problem and solvable power

conjugacy problem.

4. Hyperbolic Groups of F-Type

In the following we present the results by A. Juhász and G. Rosenberger, see [22], and

consider the combinatorial curvature of a class of one-relator products which generalize

groups of F-type. The main result is the following.

Theorem 4.1. Let Gp1q “ ˚αPT1G
p1q
α , Gp2q “ ˚βPT2G

p2q

β , and let Gp0q “ Gp1q ˚ Gp2q. Let

U P Gp1q and V P Gp2q be cyclically reduced words of infinite order in Gp0q. Assume that if

U P G
p1q
α , then G

p1q
α is free and U is cyclically reduced in G

p1q
α . Assume the analogue for V .

Let G be the quotient of Gp0q by the normal closure of UV in Gp0q. Then

1. G has non-positive combinatorial curvature as a quotient of Gp0q.

2. G is hyperbolic in the sense of M. Gromov if and only if Gpiq is hyperbolic for i “ 1, 2,

and the following property holds:

(:) At least one of U or V is neither a proper power nor a product of two elements of

order 2.

Since groups of F-type are special cases of the groups mentioned in the theorem and cyclic

groups are hyperbolic, we get the following corollary.

Corollary 4.2. Groups of F-type are hyperbolic unless U is a proper power or a product of

two elements of order 2 and V also is a proper power or a product of two elements of order

2. In the last case they have non-positive combinatorial curvature. In particular, they satisfy

a quadratic isoperimetric inequality.

We consider van Kampen diagrams. All the unexplained terms concerning them can be

found in [5] and [25].
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Remark 4.3. 1. Let M be a diagram over a free group or free product F . We shall denote

by |BM | the length of a cyclically reduced label of M over F .

2. Assume A is given by a presentation xX | Ry. Then we shall always assume that R

is cyclically reduced. Also we shall assume that our van Kampen diagram contains a

minimal number of regions for a simply connected given boundary label.

3. Recall from [20] that a presentation xX | Ry has non-positive (negative) combina-

torial curvature if every inner region D of every van Kampen diagram over R sat-

isfies that the excess κpDq “ 2π `
řn

i“1 pθi ´ πq is non-positive (negative). Here,

BD “ v1e1v2e2 ¨ ¨ ¨ vnenv1, vi vertices on BD, ei edges on BD, and θi are the inner angles

of the polygon D at vi. In general, one takes θi “ 2π
dpviq

where d pviq is the valency of vi,

that is, distribute the curvature equally among the regions containing vi

However, from the point of view of the theory of groups with non-positive curvature, see

[5] and the theory of hyperbolic groups, see [20], it is immaterial how the angles around

vi are distributed, as long as they sum up to 2π and θi ´ 2π
dpviq

ă 2π
6 . In the following we

shall make use of this remark.

The following lemma is an immediate consequence of the construction of diagrams over free

products. We omit its proof.

Lemma 4.4. Let A “ xX | Ry, B “ xY | Sy be finitely generated, and let G “ A ˚ B{D,

where D is the normal closure of T Ă A ˚ B. Let Q “ R Y S Y T . Thus Q Ă F pX Y Y q.

Assume that there are constants C and a such that the following isoperimetric inequalities

hold for R-diagrams M , S-diagrams N and T -diagrams H respectively:

VolpMq ď C|BM |a,VolpNq ď C|BN |a and VolpHq ď C|BH|a

where for a P -diagram Z, VolpZq is the number of regions of Z.

Then there is a constant C 1 ě C depending on Q such that for every wordW P F pXYY q which

represents 1 in G there is a Q-diagram U with boundary label W such that VolpUq ď C 1|W |a.

We also mention the following corollary.

Corollary 4.5. 1. If A and B are hyperbolic and the presentation of G as a quotient of

the free product A ˚B satisfies a linear isoperimetric inequality, then G is hyperbolic.

2. If A and B satisfy a polynomial isoperimetric inequality of degree k and G has nonpositive

combinatorial curvature as a quotient of A˚B, then G satisfies a polynomial isoperimetric

inequality of degree maxpk, 2q.
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Let R be the set of all the cyclically reduced cyclic conjugates of UV and pUV q´1. We

now describe the structure of the van Kampen diagrams for the groups given in Theorem

4.1. Let M be a reduced R-diagram, and let D be an inner region of M . Then D has a

boundary cycle v0µv1νv0 such that the label of µ is U and the label of v is V . From now on,

we shall not distinguish between a path in M and its label in Gp0q. Since the vertices v0 and

v1 separate µ from v we shall call them separating vertices, see Figure 1.

•• Dv0 v1

µ

ν

Figure 1

Theorem 4.6. Separating vertices of D have valency at least 4.

Proof. Assume v0 has valency 3. Then there are regions D1 and D2 which contain v0 on

their boundary. Let x be the first letter on the edge common to D1 and D2 which contains

v0. If x P Gp1q, then v0 is a separating vertex of D2, see Figure 2 (A). Consequently a

non-trivial tail of ν is a common edge of D and D2. But then, since U is cyclically reduced

and U ‰ U´1, D completely cancels D2. This violates the assumption that M is reduced.

•

D1

D2

v0
x

D

(a)

•

D1

D2

v0
x

D

(b)

Figure 2

Similarly, if x P Gp2q, then v0 is a separating vertex of D1, by symmetry, see Figure 2 (B),

leading to the same contradiction. Thus v0 has valency ‰ 3.

Finally, assume v0 has valency 2. Recall that U and V are cyclically reduced. Let first

U and V have length at least 2. Then v0 is a seperating vertex of D1 and D1 cancels D
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completely as, for instance, in Figure 3. Now let U or V have length 1. If, for instance,

U “ x and v0 has valency 2 then x “ x´1, that is, U “ U´1. This contradicts that U has

infinite order.

u

u

D

D2

Figure 3

Corollary 4.7. If M satisfies the small cancellation condition Cp5q, then M has a non-

positive combinatorial curvature.

The inner region D always has two vertices with valency ě 4 (namely v0 and v1).

Remark 4.8. Neither U nor V can be a piece, for then as we have seen, the diagram is not

reduced. Consequently, U and V are each the product of at least two pieces.

Since by the theorem no region D1 can be a neighbor of D with a common edge, see Figure

4, which contains v0 as an inner vertex, D has at least 4 neighbors.

• v0D1 D

Figure 4

This proves the following.

Corollary 4.9. 1. M satisfies the small cancellation condition Cp4q.

2. An inner region D has 4 neighbors if and only if its boundary cycle is subdivided into 4

edges in such a way that the label on the first two edges is U and the label on the second

two edges is V . In particular, if such a region exists, then U and V are each the product

of two pieces.
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Thus, in what follows, we shall study the situation when U is the product of two pieces.

Denote by D0 the set of all the inner regions in M which have a boundary path with label

in tU˘1, V ˘1u and have a decomposition to two pieces by a vertex which is not a separating

vertex.

Denote the set of all the inner vertices of M which are not separating vertices and divide a

boundary path of a region D with label U˘1 or label V ˘1 to two parts by V0. For i ě 3

denote by Vi the set of all the vertices of M not in V0 which have valency i.

Denote by κpUq the contribution of all the vertices of an inner region D which are inner

vertices of the boundary path µ with label U to the excess of D, and let κpV q be defined

analogously. Then

κpDq “ 2π ` κpUq ` κpV q ` pθ0 ´ πq ` pθt ´ πq “ κpUq ` κpV q ` θ0 ` θt (4.1)

where θ0 and θt denote the angles of the two separating vertices v0 and vt, compare Figure 1.

Definition 4.10. 1. A corner consists of a pair pe, e1q of edges which have the same initial

vertex and are such that the path e´1e1 is a subpath of a boundary cycle of a region

associated with the corner.

2. Given a vertex u P V0, a bad corner at u is a corner pe, e1q such that the path e´1e1 has

label one of U˘1, V ˘1. A good corner is a corner which is not bad.

3. Call two corners adjacent if they have an edge in common.

Theorem 4.11. Let the edge pair
`

α´1, β
˘

define a bad corner at the vertex v of the region

D. Then

1. The two corners at v which are adjacent to the given corner are good corners.

2. The vertex v is preceded or followed (in the boundary cycle of D) by a vertex of valency

4 which is a separating vertex of D.

Proof. Let w0 and w1 be the separating vertices of F , see Figure 5. Then w1 ‰ v since v is

not a separating vertex by assumption and w0 ‰ v0, otherwise either D1 cancels D (if µ has

label U) or U is not cyclically reduced (if µ1 has label U´1).

Now define the angles in M . If v P Vi, i ě 3, then assign the value 2π
i to every angle having

v as its vertex. If v P V0 and d “ dpvq ě 5 then assign to each angle having v as its vertex

the value 2π
d . Let ε “ 2π

8m2 , m “ 2p|U | ` |V |q. If v P V0 and dpvq “ 4, then by Theorem 4.11

there are at most two regions which contain v on their boundary and belong to D0 (D1 and

D3 in Figure 6 (A) and (B)).
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• •

•
•

•
•

•

D

D1
D2

v0 v1

w0

w1

w2

w3

ν1

ν2

µ1

µ2

α β
v

Figure 5

If D1 and D3 are in D0, then assign 2π
4 ´ ε to γ1 and γ3 and assign 2π

4 ` ε to γ2 and γ4. If

D1 P D0 and D3 R D0, then assign 2π
4 ´ ε to γ1,

2π
4 ` ε

2 to γ2 and γ4 and 2π
4 to γ3. Finally,

if dpvq “ 3, then by Theorem 4.11 exactly one of the regions containing v, say D1, belongs

to D0, see Figure 6 (B). Assign 2π
4 ´ ε to γ1 and assign 2π

3 ` 2π
24 ` ε

2 to γ2 and to γ3.

•D2

D3

D4

D1

γ4

γ2

vγ1

γ3

(a)

•D2

D3

D1

γ3

γ2

vγ1

(b)

Figure 6

Theorem 4.12. Let D be an inner region of M . If D has a vertex v P V0 on its boundary,

then κpDq ă 0.
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Proof. Denote by ai the number of inner vertices of µ (see Figure 1) in Vi, i ě 3, and let

a˚
4 “

ř

iě4 ai. For i ě 5, denote by bi the number of inner vertices of µ in V0 with valency i.

Define numbers b1
4, b

2
4, c4 and c3 as follows:

‚ b1
4 is the number of inner vertices of µ in V0 which are of degree 4 and such that

a) the corner associated with D is a good corner;

b) exactly one of the two corners adjacent to the corner associated with D is a bad

corner;

‚ b2
4 is the number of inner vertices of µ in V0 which are of degree 4 and such that

a) the corner associated with D is a good corner;

b) both the two corners adjacent to the corner associated with D are bad corners;

‚ c4 is the number of inner vertices of µ in V0 which are of degree 4 and such that

a) the corner associated with D is a good corner;

b) neither of the two corners adjacent to the corner associated with D are bad corners

(so that the remaining corner which is ’opposite’ to the corner associated with D,

must be a bad corner);

‚ c3 is the number of inner vertices of µ in V0 of degree 3 such that the corner associated

with D is a good corner (in which case exactly one of the other two corners adjacent to

the corner associated with D is a bad corner).

Assume D R D0 and evaluate κpUq. Thus,

κpUq “
ÿ

iě3

ai

ˆ

2π

i
´ π

˙

`
ÿ

iě5

bi

ˆ

2π

i
´ π

˙

` b1
4

ˆ

2π

4
` ε´ π

˙

` b2
4

ˆ

2π

4
`
ε

2
´ π

˙

` c4

ˆ

2π

4
´ π

˙

` c3

ˆ

2π

3
`

2π

24
´ π `

ε

2

˙

ď ´
π

4
c3 ´

π

2
a˚
4 ´

π

2

`

b1
4 ` b2

4

˘

`
ε

2

`

2b1
4 ` b1

4 ` c3
˘

ď ´
π

4
c3 ´

π

2
a˚
4 ´

π

2

`

b1
4 ` b2

4

˘

`
π

8m2
p2mq.

Assume c3 ą 0. Then, by Theorem 4.11, a˚
4 ě 1

2c3, hence ´π
2

`

a˚
4 ` 1

2c3
˘

ď ´π
2 ´ π

4 , and

κpUq ď ´

´π

4
`
π

2

¯

`
π

8m2
p2mq “

3

4
π `

π

4m
ă ´

3

4
π `

π

4
“ ´

π

2

as m ą 1. Thus

if D R D0 and c3 ą 0, then κpUq ă ´
π

2
. (4.2)

Assume c3 “ 0. Then b1
4 ` b2

4 ‰ 0, hence, by Theorem 4.11, a4 ą 0. Consequently,
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kpUq ď ´
π

2
a4 ´

π

2

`

b1 ` b2
˘

`
π

4m
ď ´

π

2
´
π

2
`

π

4m
ă
π

2
´
π

2
`
π

4
ă
π

2
.

If D R D0 and c3 “ 0, then κpUq ă ´
π

2
. (4.3)

Assume now that D P D0. Then, by the choice of γ1, κpUq “ ´π
2 ´ ε.

If D P D0, then κpUq ă ´
π

2
. (4.4)

Evaluate now κpDq. By (4.1), (4.2), (4.3), and (4.4) we have

κpDq “ κpUq ` κpV q `
π

2
`
π

2
ă ´

π

2
´
π

2
`
π

2
`
π

2
“ 0

which yields the theorem.

Corollary 4.13. D has non-positive combinatorial curvature. D has zero curvature if and

only if D has four neighbors and every boundary vertex is a separating vertex with valency 4.

We now prove Theorem 4.1.

Proof of Theorem 4.1. We remark that we already have the first statement in Theorem 4.1

by the previous results. We now consider the relation (:). Let the notation be as in Figures

7 (A) and (B). Then either v is a separating vertex for D1 or v is a separating vertex for D2.

•

D
A

v
B

D2D1

D3
V U

(a)

•

D
A

v
B

V V

(b)

Figure 7

If v is a separating vertex for only one of D1 and D2, then it is a separating vertex for D3

and hence for two neighboring regions of D (D1 and D3 or D2 and D3). But the boundary

labels of such neighbors cancel each other, contradicting our assumption that M contains a

minimal number of regions with the given boundary label. Consequently, v is a separating

vertex for both D1 and D2, see Figure 7 (B).
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Let A be the label of the piece common to D and D1, and let B be the label of the piece

common to D and D2. Then one of the following equations holds: pABqpABq “ UpABqV

(see Figure 8 (A)) or A “ A´1 and B “ B´1, see Figure 8 (B). In the first case A “ Dα and

B “ Dβ and in the second case A and B have order 2 as required.

•

••
A B A B

A B

(a)

•

••
B A

B A

(b)

Figure 8

Assume (:) holds. Then by Theorem 4.12 the combinatorial curvature at each inner region

of a derived van Kampen diagram over R is strictly negative. Therefore G is hyperbolic.

Assume now that (:) does not hold. Then UV (or V U) has one of the following forms.

a) AnBm for n,m ě 2;

b) ABCD,A “ A´1, B “ B´1, C “´1, D “ D´1;

c) ABCn, n ě 2, A “ A´1, B “ B´1.

In case a) let H “ xA,By. Then it follows from the fact that every van Kampen diagram

over the symmetric closure of UV has a non-positive combinatorial curvature that

H – xa, b | an “ b´my.

Consequently, G is not hyperbolic.

A similar argument shows that the subgroup of G generated by A,B,C and D in case b) is

isomorphic to xa, b, c, d | a2, b2, c2, d2, abcdy which contains a normal free Abelian subgroup

generated by ab and bc.

Finally in case c) let H “ xB,BCny. Then, as above, H – xa, b | a2, pabnq2y in which

K “ xbny is an infinite cyclic normal subgroup such that H{K “ Z2 ˚ Zn, n ě 2. Thus in all

cases, G is not hyperbolic.

Corollary 4.14. Let G be a group of F-type. G is hyperbolic unless U is a proper power

or a product of two elements of order 2 and V also is a proper power or a product of two

elements of order 2.
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We just want to remark here that by the result of F. Dahmani and V. Guirardel, see [11], the

isomorphism problem for a hyperbolic group of F-type is solvable in the class of hyperbolic

groups.

It remains the question if the isomorphism problem is solvable for a group of F-type in

some class of groups. This is an open problem. There exists just a result in the special

case of cyclically pinched one-relator groups, that is, in the case of groups of F-type with

e1 “ e2 “ ¨ ¨ ¨ “ en “ 0. The isomorphism problem for a cyclically pinched one-relator group

G is solvable in the class of one-relator groups, see [29] and [15].

Certainly, G has no faithful representation in PSLp2,Rq if U “ XY with X2 “ Y 2 “ 1 and

V “ WZ with W 2 “ Z2 “ 1 or U “ Uk
1 , V “ V q

1 with k, q ě 2.

Concerning the question if there exists a faithful representation ρ : G Ñ PSLp2,Rq we are

left, up to symmetry, with the case U “ XY with X2 “ Y 2 “ 1 and V “ V q
1 with q ě 2.

But in this case there does not exist such a ρ because

pρpXqq2 “ pρpUY qq2 “ pρpV Y qq2 “ 1

implies ρpV1Y q2 “ 1, but pV1Y q2 ‰ 1 in G for any essential representation ρ : G Ñ PSLp2,Rq.

Our next aim is to characterize the hyperbolicity of a group of F-type by means of faithful

representations in PSLp2,Rq. In [14] we showed the following.

Theorem 4.15. Let G be a hyperbolic group of F-type. Then G has a faithful representation

in PSLp2,Rq.

Hence, we get the following.

Corollary 4.16. Let G be a group of F-type. Then G is hyperbolic if and only if G has a

faithful representation in PSLp2,Rq.

This has now some additional algebraic consequences. We know that PSLp2,Rq is commu-

tative transitive. Hence, any hyperbolic group of F-type is commutative transitive. Recall

that a group H is commutative transitive if rx, ys “ 1 “ ry, zs for x, y, z P H, y ‰ 1, then

rx, zs “ 1.

Closely tied to commutative transitivity is the concept of being CSA. A group H is CSA or

conjugately separated Abelian if maximal Abelian subgroups are malnormal. These concepts

have played a prominent role in the studies of fully residually free groups, limits groups and

discriminating groups see [13]. They also play a role in the solution of the Tarski problems.

CSA always implies commutative transitivity.
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In general the class of CSA groups is a proven subclass of the class of commutative transitive

groups, however they are equivalent in the presence of residual freeness. For hyperbolic

groups of F-type we have the following.

Theorem 4.17. Let G be a hyperbolic group of F-type. Assume that G is torsion-free or

has only odd torsion, that is, ei is odd if ei ě 2. Then G is CSA.

Proof. We may assume that G is already a subgroup of PSLp2,Rq. Let A be a maximal

Abelian subgroup of G. Since G is a subgroup of PSLp2,Rq any two elements a, b P A have,

considered as linear fractional transformations, the same fixed points.

Assume that G is not CSA. Then there are non-trivial elements a, b P A and x P GzA with

xax´1 “ b. This means that x permutes non-trivially the fixed points of a, which are also

the fixed points b. Hence, x must have order two. This gives a contradiction, and therefore

G is CSA.

There is a certain relation between CSA groups and RG groups. A group H is a restricted

Gromov group or an RG group, if H satisfies the following property: If g and h are elements

in H then either the subgroup xg, hy is cyclic or there exists a positive integer t with gt ‰ ht

and xgt, hty “ xgty ˚ xhty.

An RG group H has the property that every Abelian subgroup is locally cyclic. Hence, it

is often convenient to assume that every element of H is contained in a maximal cyclic

subgroup of H. This last property is of course satisfied in hyperbolic groups. Certainly, an

RG group is commutative transitive. Using [15, Theorem 3.9.18] we easily get Theorem 4.18.

Theorem 4.18. Let G be a hyperbolic group of F-type. Assume that G is torsion-free or

has only odd torsion. Then G is an RG group.

We present the following result and sketch its proof.

Theorem 4.19. Let G be a group of F-type which is not a free product of cyclic groups.

Assume that each subgroup of G of infinite index is a free product of cyclic groups. Then G

is a co-compact planar discontinuous group.

Sketch of proof. We first consider the case that G is not hyperbolic. We have to consider

the situations for U and V which yield that G is not hyperbolic. For these situations, we

easily find subgroups of infinite index which are not free products of cyclic groups unless

G – xU, V | U2 “ V 2y or G – xa, b, V | a2 “ b2 “ abV 2 “ 1y or G – xa, b, c, d | a2 “ b2 “

c2 “ d2 “ abcd “ 1y. But these three groups are co-compact Euclidean planar discontinuous

groups.
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Now let G be hyperbolic. We just consider G as a quotient of the cyclically pinched one-

relator group where the ai all have infinite order. Next we extend the arguments in [7].

Then we use the solution of Nielsen’s realization problem by S. P . Kerckhoff in [24] (see also

[33] for many details and applications.)

We end this section with the following conjecture.

Conjecture 4.20. Let H be a finitely generated, non-elementary subgroup of PSLp2,Rq.

Then H is finitely presented.

5. One-Relator Amalgamated Products and some Algebraic Consequences

In this section we give versions and extensions of some of the results in [12].

If A,B P PSLp2,Cq we say that the pair tA,Bu is irreducible if A,B, regarded as linear

fractional transformations, have no common fixed point, that is, trrA,Bs ‰ 2.

Theorem 5.1 (Freiheitssatz). Suppose G “ G1 ˚A G2 with A “ xay cyclic. Let R P GzA

be given in a reduced form R “ c1d1 ¨ ¨ ¨ ckdk with k ě 1 and ci P GizA, di P G2zA for

i “ 1, . . . , k. Assume that there exists a representation ϕ : G Ñ PSLp2,Cq such that

ϕ|G1 and ϕ|G2 are faithful and the pairs tϕpciq, ϕpaqu and tϕpdiq, ϕpaquare irreducible for

i “ 1, . . . , k.

Then the group H “ G{NpRmq, m ě 2, admits a representation ρ : H Ñ PSLp2,Cq such

that G1 Ñ H
ρ

Ñ PSLp2,Cq and G2 Ñ H
ρ

Ñ PSLp2,Cq are faithful and ρpRq has order m.

In particular, G1 Ñ H and G2 Ñ H are injective.

Proof. Let ϕ : G Ñ PSLp2,Cq be the given representation of G such that ϕ|G1 and ϕ|G2 are

faithful and the pairs tϕpciq, ϕpaqu and tϕpdiq, ϕpaqu are irreducible for i “ 1, . . . , k.

We may assume that ϕpaq has the form ϕpaq “

˜

s 0

0 s´1

¸

or ϕpaq “

˜

1 1

0 1

¸

.

Suppose first that ϕpaq “

˜

s 0

0 s´1

¸

and let T “

˜

t 0

0 t´1

¸

with t a variable whose value

in C is to be determined.

Define

‚ ρph1q “ ϕph1q for h1 P G1 and

‚ ρph2q “ Tϕph2qT´1 for h2 P G2.
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Since T commutes with ϕpaq for any t the map ρ : H Ñ PSLp2,Cq will define a representation

with the desired properties if there exists a value t such that ρpRq has order m.

Recall that a complex projective matrix B in PSLp2,Cq will have finite order m ě 2 if

trB “ ˘2 cosp π
mq. As in the statement of the theorem assume R “ c1d1 ¨ ¨ ¨ ckdk with k ě 1

and ci P G1zA, di P G2zA for i “ 1, . . . , k, and assume that the pairs tϕpciq, ϕpaqu and

tϕpdiq, ϕpaqu are irreducible for i “ 1, . . . , k. Define

fptq “ trpϕpc1qTϕpd1qT´1 ¨ ¨ ¨ϕpckqTϕpdkqT´1q,

then fptq is a Laurent polynomial in t of degree 2k in both t and t´1. The coefficients of t2k

and t´2k are non-zero because the pairs tϕpciq, ϕpaqu and tϕpdiq, ϕpaqu are irreducible.

Therefore by the fundamental theorem of algebra there exists a t0 with fpt0q “ 2 cos π
m .

With this choice of t0 we have trpρpRqq “ 2 cos π
m and this ρpRq has order m. Therefore ρ

is a representation with the desired properties. Now assume ϕpaq “

˜

1 1

0 1

¸

. In this case,

define T “

˜

1 t

0 1

¸

with t again a variable. Again T commutes with ρpaq and the proof

goes through analogously as above giving the desired representation.

Corollary 5.2. Let G “ G1 ˚A G2 be a group of F-type. Assume further that n ě 4,

2 ď p ď n´ 2 and neither U “ Upa1, . . . , apq nor V “ V pap`1, . . . , anq is a proper power in

the free product on the generators they involve.

Suppose that UV involves all the generators and let R “ c1d1 ¨ ¨ ¨ ckdk with k ě 1 and

ci P xa1, . . . , apyzxUy, di P xap`1, . . . , anyzxV y for i “ 1, . . . , k, and let m ě 2. Then the

conclusion of Theorem 5.1 holds for H “ G{NpRmq with

G1 “ xa1, . . . , ap | ae11 “ ¨ ¨ ¨ “ a
ep
p “ 1y,

G2 “ xap`1, . . . , an | a
ep`1

p`1 “ ¨ ¨ ¨ “ aenn “ 1y,

and

A “ xU´1y “ xV y.

Proof. By Theorem 2.3, the group G admits a faithful representation ϕ in PSLp2,Cq such

that the pairs tϕpciq, ϕpUqu and tϕpdiq, ϕpV qu are irreducible for i “ 1, . . . , k.

Corollary 5.3. Let G be a group of F-type as in Corollary 5.2 and R the relator as in

Corollary 5.2. Suppose m ě 8. Then H “ G{NpRmq is virtually torsion-free.

Proof. In G any element of finite order is conjugate to a power of a generator ai. Since

m ě 8 from the torsion theorem for small cancellation products of D. Collins and F. Perraud,
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see [25] or [8], any element of finite order in G is conjugate to a power of a generator or a

power of R.

Since ρpRq has exact order m an the representations of G1 and G2 are faithful it follows

that (the constructed) ρ is essentially faithful and therefore G is virtually torsion-free.

Remark 5.4. Let G be a group of F-type with the presentation

G “ G1 ˚A G2

with G1 ‰ A ‰ G2,

G1 “ xa1, . . . , ap | ae11 “ ¨ ¨ ¨ “ a
ep
p “ 1y,

G2 “ xap`1, . . . , an | a
ep`1

p`1 “ ¨ ¨ ¨ “ aenn “ 1y,

U “ Upa1, . . . , apq, V “ pap`1, . . . , anq, and A “ xU´1y “ xV y.

We call G a special group of F-type if UV involves all the generators, n ě 4, 2 ď p ď n´ 2,

and neither U nor V is a proper power in the free product on the generators they involve.

Now let G be a special group of F-type and let R P GzA be given in a reduced form

R “ c1d1 ¨ ¨ ¨ ckdk with k ě 1 and ci P G1zA, di P G2zA for i “ 1, . . . , k.

Then we may apply the theory of one-relator quotients H “ G{NpRmq with m ě 2 as

described in [19] and the deficiency arguments in Section 2 analogously in this more general

context.

If we mirror the respective proofs there, then we easily get the following.

Theorem 5.5. Let G be a special group of F-type, R the relator as in Corollary 5.2, and

H “ G{NpRmq, m ě 2. Then the following hold.

1. For i “ 1, . . . , n let αi “ 0 if ei “ 0 and αi “ 1
ei
, if ei ě 2. Then

(i) if
řn

i“1 αi ` 1
m ď n´ 2, then H has a subgroup of finite index mapping homomor-

phically on Z. In particular, H is infinite.

(ii) if
řn

i“1 αi ` 1
m ă n´ 2, then H has a subgroup of finite index mapping homomor-

phically onto a free group of rank 2. In particular, H is SQ-universal.

2. H is a non-trivial free product with amalgamation.

3. If n ě 5 or n “ 4 and at least one of the ei is not equal to 2, then H has a free subgroup

of rank 2.

The details can be found in [12].
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We have considered special groups G of F-type. We can make similar calculations for the

hyperbolic groups of F-type which also have a faithful representation on PSLp2,Cq.

If now, for instance, V “ V q
1 , q ě 2, V1 not a proper power in xap`q, . . . , any, one has

to be careful with the relator R “ c1d1 ¨ ¨ ¨ ckdk for k ě 1 where ci P xa1, . . . , apyzxUy and

di P xap`1, . . . , anyzxV y for i “ 1, . . . , k; G admits a faithful representation ϕ in PSLp2,Cq but

then a pair tϕpdiq, ϕpV qu is not irreducible if di “ V t
1 with q ∤ t. But everything goes through

analogously if we consider only relators R of the form as above with di P xap`1, . . . , anyzxV1y.
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[12] B. Fine, F. Röhl and G. Rosenberger, A Freiheitssatz for certain one-relator amalgamated products,

in Combinatorial Geometric Group Theory, pages 73-86, London Math. Soc., Lecture Notes Ser. 204,

1995.

[13] B. Fine, A. Gaglione, A. Myasnikov, G. Rosenberger, and D. Spellman, The Elementary Theory of

Groups. De Gruyter, 2014.

[14] B. Fine, A. Moldenhauer, and G. Rosenberger, Faithful real presentations of groups of F -type. Int. J.

Group Theory, 9:143–155, 2020.

[15] B. Fine, A. Moldenhauer, G. Rosenberger and L. Wienke, Topics in Infinite Group Theory, De Gruyter,

2021.

[16] B. Fine and G. Rosenberger, Conjugacy separability of Fuchsian groups and related questions. Contemp.

Math., 109:11–18, 1990.

[17] B. Fine and G. Rosenberger, Classification of All Generating Pairs of Two Generator Fuchsian Groups.

In Groups St. Andrews 1993, pages 205–232. London Math. Soc. Lecture Note Ser. #211, 1995.



Vol. 16:1 GROUPS OF F-TYPE 5:27

[18] B. Fine and G. Rosenberger, Groups which admit essentially faithful representations. New Zealand J.

of Math. 25, 1-7, 1996.

[19] B. Fine and G. Rosenberger, Algebraic Generalization of Discrete Groups. Marcel Dekker, 1999.

[20] M. Gromov, Hyperbolic groups. In S. M. Gersten, editor, Essays in Group Theory, pages 75–263.

Mathematical Sciences Research Institute Publications #8, 1987.

[21] H. Helling, Diskrete Untergruppen von SLp2,Rq. Inv. Math. 17, 217-229, 1972.

[22] A. Juhász and G. Rosenberger, On the combinatorial curvature of groups of F -type and other one-relator

products of cyclics. Contemp. Math., 169:373–384, 1994.

[23] A. Karrass and D. Solitar, The subgroups of a free product of two groups with amalgamated subgroup.

Trans. Am. Math. Soc., 150:227–255, 1970.

[24] S. P. Kerckhoff, The Nielsen Realization Problem. Ann. of Math. 117, 235-265, 1983.

[25] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory. Springer, 1977.

[26] A. Malcev, On isomorphic matrix representations of infinite groups. Mat. Sb. 8(50), 405-422, 1940.

[27] P. M. Neumann, The SQ-universality of some finitely represented groups. J. Australian Math. Soc. 11,

1-6, 1973.

[28] G. Rosenberger, Some remarks on a paper of A. F. Beardon and P. L. Waterman about strongly

discrete subgroups of SL2pCq. J. London Math. Soc. 27, 39-42, 1983.

[29] G. Rosenberger, The isomorphism problem for cyclically pinched one-relator groups. J. Pure Appl.

Algebra, 95:75–86, 1994.

[30] A. Selberg, On Discontinuous Groups in Higher-Dimensional Symmetric Spaces. Int. Colloq. Function

Theory. Tata Institute, Bombay, 1960.

[31] C. Y. Tang, Some results on one-relator quotients of free products, Contemporary Math. AMS 109,

165-177, 1990.

[32] W. Magnus, A. Karrass, and D. Solitar. Combinatorial Group Theory. Wiley, New York, 1966.

[33] H. Zieschang, Finite Groups of Mapping Classes of Surfaces. Lecture Notes in Math. #875, Springer,

1981.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany


	1. Introduction
	2. Essential Representations and Algebraic Consequences
	3. Additional Algebraic Results for Groups of F-Type
	4. Hyperbolic Groups of F-Type
	5. One-Relator Amalgamated Products and some Algebraic Consequences
	References

