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Abstract. This is a survey of our recent results on the amenability problem for Thomp-
son’s group F . They mostly concern esimating the density of finite subgraphs in Cayley
graphs of F for various systems of generators, and also equations in the group ring of F .
We also discuss possible approaches to solve the problem in both directions.

1. Preliminaries

In this survey we collect a number of our recent results on the amenability problem for
Thompson’s group F . They are mostly contained in [27, 28, 29, 30, 31, 32, 33, 34]. In the
this section we introduce concepts and notation used throughout the paper. The reader
who is familiar with that can skip this background.

We recall the concept of a graph in the sense of Serre, Cayley graph of a group (right
anf left), internal and external vertices of a subgraph of a Cayley graph, and various kinds
of its boundary. It is convenient to use automata terminology saying that an automaton
accepts (or does not accept) a generator. We introduce an important concept of density
of Cayley graphs and their subgraphs together with the related concept of their (Cheeger)
isoperimetric constant.

Then we recall the definition of amenabilty of semigroups and groups, discuss Folner
criterion and some other necessary and sufficient conditions for amenabilty. In order to work
with elements of Thompson’s group F whose basic properties are discussed in a separate
subsection, we present terminology related to rooted binary trees and forests. We recall
the definition of the group F and list some of its important properties. The amenability
problem for this group is in the centre of our attention.

Section 2 contains the description of our recent result on the density of finite subgraphs
of the Cayley graph of F in various generating systems. One of the most important results
is Theorem 2.7 where we show that the density of the Cayley graph of F in standard
generators strictly exceeds 3.5. This is an improvement of the Belk-Brown construction for
which there was a conjecture of its optimality.
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Section 3 concerns equations in the group ring of F and their systems. Due to results by
Bartholdi and Kielak, we know that the amenabilty problem for F is equivalent to the Ore
condition for group rings, that is, the question whether equation au = bv in this ring has
nonzero solutions. We present a number of results in this direction giving a reduction of the
problem to the case of monoid rings K[M ] of the positive monoidM ⊂ F and homogeneous
polynomials a, b. We solve some partial cases of this problem including the case of linear
polynomials. We also give a description for the set of solutions of some important equations
and their systems.

Section 4 contains a new description of exhausting finite subsets of the Cayley graph
of F and a new algorithm to solve the word problem in this group. Besides, we discuss
possible approaches to the amenability problem to solve it in both directions.

1.1. Cayley graphs. By a graph we mean a (non-oriented) graph in the sense of Serre [43].
This means that each geometric edge consists of two mutually inverse directed edges. As
a formal concept, this is a 5-tuple Γ = ⟨V,E,−1 , ι, τ ⟩, where V , E are disjoint sets (of
vertices and edges, respectively); −1 : E → E, ι : E → V , τ : E → V . We assume that
e ̸= e−1, (e−1)−1 = e, ι(e−1) = τ(e), τ(e−1) = ι(e) for all e ∈ E. Here e−1 is called the
inverse edge of e, ι(e) is the initial vertex of e, τ(e) is the terminal vertex of e.

Let A be an alphabet, that is, a nonempty set of symbols (or letters). Taking a disjoint
bijective copy A−1 of the set A, we get the set A±1 = A ∪ A−1 called a group alphabet. It
has an involution −1 without fixed points defined by (a−1)−1 ⇌ a. Elements of the free
monoid (A±1)∗ are called group words.

Let G be a group equipped by mapping A → G such that the image of A generates
G. We will say that A is a set of (group) generators for G. Usually A is identified with
its image provided the above map is injective. For more general needs it is convenient to
include the case when different symbols may denote the same group generator. In this case
we may say that A defines a multiset of generators, say, {a1 = x0, a2 = x0, a3 = x1}, where
x0 is doubly repeated.

Let G be a group generated by A in the above sense. Its right Cayley graph Γr = C(G;A)
is defined as follows. The set of vertices is G; for any a ∈ A±1 we put a directed edge
e = (g, a) with ι(e) = g, τ(e) = ga. Its inverse is e−1 = (ga, a−1). Each edge has a label; for
the above edge e = (g, a) it is just a. The label function can be naturally continued to the
set of paths.

The concept of a left Cayley graph Γl = C(G;A) is defined in a similar way. Here the
set of vertices is also G. A directed egde e = (a, g) with label a has ι(e) = ag, τ(e) = g.
That is, going along the edge labelled by a, means cancelling a on the left. The inverse egde
is e−1 = (a−1, ag). Labels of paths are defined similarly for this case.

1.2. Automata, density, and isoperimetric constants. The cardinality of a finite set
Y will be denoted by |Y |.

Let G be an infinite group generated by A. For our needs we assume that A is always
finite, |A| = m. Let Γ = C(G,A) be the Cayley graph of G, right or left. To any finite
nonempty subset Y ⊂ G we assign a subgraph in Γ adding all edges connecting vertices of
Y . So given a set Y , we will usually mean the corresponding subgraph. This is a labelled
graph that we often call an automaton. For each g ∈ Y we have exactly 2m directed edges
in Γ starting at g, where a ∈ A±1. If the endpoint of such an edge with label a belongs
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to Y , then we say that the vertex g of our automaton Y accepts a. For the case of right
Cayley graphs this means ga ∈ Y , for the case of left Cayley graphs this means a−1g ∈ Y .

A vertex g ∈ Y is called internal whenever it accepts all labels a ∈ A±1. That is, the
degree of g in Y equals 2m. Otherwise we say that g belongs to the inner boundary of Y
denoted by ∂Y .

By dist(u, v) we denote the distance between two vertices in Γ, that is, the length of
a shortest path in Γ that connects vertices u, v. For any vertex v and a number r ≥ 0 let
Br(v) denote the ball of radius r around v, that is, the set of all vertices in Γ at distance
≤ r from v. For any set Y of vertices, by Br(Y ) we denote the r-neighbourhood of Y , that
is, the union of all balls Br(v), where v runs over Y . By ∂oY we denote the outer boundary
of Y , that is, the set B1(Y ) \ Y .

An edge e is called internal whenever it connects two vertices of Y . If an edge e connects
a vertex of Y with a vertex outside Y , then we call it external. That is, e connects a vertex
in ∂Y with a vertex in ∂oY . The set of external edges form the Cheeger boundary of Y
denoted by ∂∗Y .

To any vertex v in ∂Y we can assign an external edge starting at v. This gives an
injection from ∂Y to ∂∗Y . On the other hand, there exist at most 2m edges in ∂∗Y staring
at v. This implies inequalities |∂Y | ≤ |∂∗Y | ≤ 2m|∂Y |. The same arguments show that
|∂oY | ≤ |∂∗Y | ≤ 2m|∂oY |.

By the density of a subgraph Y we mean its average vertex degree. This concept was
introduced in [26]; see also [27]. It is denoted by δ(Y ). A Cheeger isoperimetric constant of
the subgraph Y is the quotient ι∗(Y ) = |∂∗Y |/|Y |. It follows directly from the definitions
that δ(Y ) + ι∗(Y ) = 2m. Indeed, each vertex v has degree 2m in the Cayley graph Γ. This
is the sum of the number of internal edges starting at v, which is degY (v), and the number
of external edges starting at v. Taking the sum over all v ∈ Y , we have 2m|Y |, which is
equal to

∑
v
degY (v) + |∂∗Y |. Dividing by |Y |, we get the above equality.

(We can mention also the paper [2] where some computaional experiments with densities
of subgraphs are presented.)

By the density of the Cayley graph Γ = C(G;A) we mean the number δ̄(Γ) = sup
Y
δ(Y ),

where Y runs over all nonempty finite subgraphs. Analogously, the Cheeger isoperimetric
constant of the group G with respect to generating set A, is the number ι∗(Γ) = inf

Y
ι∗(Y ).

Clearly, δ̄(Γ) + ι∗(Γ) = 2m.
In further sections, working with isoperimetric constants, we will write ι∗(G;A) instead

of the above notation.

1.3. Amenability of semigroups and groups. Let S be a semigroup. Suppose that
there exists a mapping µ : P(S) → [0, 1] from the power set of S into the unit interval
satisfying the following conditions:

1) µ is additive, that is, µ(A ∪B) = µ(A) + µ(B) for any disjoint subsets A,B ⊆ S;
2) µ is left invariant, that is, µ(sA) = µ(A) for any s ∈ S, A ⊆ S;
3) µ is normalized, that is, µ(S) = 1.

Then the semigroup S is called left amenable.

The definition of right amenable semigroups is given in a similar way. These concepts
differ in general. However, for the case of groups they are equivalent. Moreover, both of
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them will be equivalent to the conditions with the two-sided invariance. The proof can be
found in [21].

We do not list all well-known properties of (non)amenable groups. It is sufficient to
refer to one of modern surveys like [42]. Just notice that all finite and abelian groups are
amenable. The class of amenable groups is closed under taking subgroups, homomorphic
images, group extensions, and directed unions of groups. The groups in the closure of
the classes of finite and abelian groups under this list of operations are called elemetary
amenable (EA). Also we need to say that free groups of rank > 1 are not amenable.

We will often refer to the following Følner criterion [18]. Here we restrict ourselves to
the case of finitely generated groups.

Proposition 1.1. A group G with finite set of generators A is amenable if and only if its
Cheeger isoperimetric constant iz zero: ι∗(G;A) = 0.

This holds for any finite set of generators. Equivalently, one can say that the density
of the Cayley graph Γ = C(G;A) (right or left) has its maximum value: δ̄(Γ) = 2m, where
m = |A|.

In practice, to establish amenability of a group, it is sufficient to construct a collection
of nonempty finite subgraphs Y in the Cayley graph such that inf

Y
|∂∗Y |/|Y | = 0. Such

subsets of vertices are called Folner sets. Informally, this means that almost all vertices of
these sets are internal.

If one expects that a group is not amenable, or the answer is unknown, it is reasonable
to construct sets with the least possible value of ι∗(G;A). We will discuss this approach
later.

In case when we are going to establish non-amenability of a group, it is useful to apply
some other criteria.

Let G be a group generated by a finite set A. A doubling function on G is a mapping
ψ : G→ G such that

a) for all g ∈ G the distance dist(g, ϕ(g)) is bounded from above by a constant K > 0,
b) any element g ∈ G has at least two preimages under ψ.

Proposition 1.2. A group G with finite set of generators A is non-amenable if and only
if it admits a doubling function.

This criterion is often attributed to Gromov. An elegant proof of it can be found in
[11], see also [14]. Note that this property also does not depend on the choice of a finite
generating set.

An interesting partial case happens if the constant K in the above definition equals 1.
In [26] we proved that for a 2-generator group G, a doubling function with constant K = 1
exists if and only if the density of the Cayley graph does not exceed 3. Equivalently, one
can say that the Cheeger isoperimetric constant is at least one: ι∗(G;A) ≥ 1.

We call a group G strongly non-amenable (with respect to a given finite generating set
A) whenever this inequality holds: ι∗(G;A) ≥ 1. It is interesting to find a nesessary and
sufficient condition for this property for groups with any finite number of generators. This
will be done in Section 2.

Another practical criterion for non-amenabilty can be stated in terms of flows on Cayley
graphs. Let us introduce the terminology for that.
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A flow on a graph Γ is a real-valued function f : E → R such that f(e−1) = −f(e). We
say that f(e) is the flow through the edge e. Given a vertex v, we define an inflow to it as
a sum of flows through all edges with v as a terminate vertex.

The following criterion in terms of flows is essentially known. It can be derived from
the above criterion in terms of doubling functions.

Proposition 1.3. Let G be a group with finite generating set A, and let Γ = C(G;A) be its
Cayley graph. The group G is non-amenable if and only if there exist constants C > 0 and
ε > 0, and a flow f on Γ with the following properties:

a) The absolute value of the flow through each edge is bounded: |f(e)| ≤ C for all e ∈ E;
b) The inflow into each vertex is at least ε.

1.4. Rooted binary trees and forests. We add this short subsection to introduce some
notation used in the paper.

Formally, a rooted binary tree can be defined by induction.
1) A dot · is a rooted binary tree.
2) If T1, T2 are rooted binary trees, then (T1ˆT2) is a rooted binary tree.
3) All rooted binary trees are constructed by the above rules.

Instead of formal expressions, we will use their geometric realizations. A dot will be
regarded as a point. It coincides with the root of that tree. If T = (T1ˆT2), then we draw a
caret forˆas a union of two closed intervals AB (goes left down) and AC (goes right down).
The point A is the root of T . After that, we draw trees for T1, T2 and attach their roots to
B, C respectively in such a way that they have no intersection. It is standard that for any
n ≥ 0, the number of rooted binary trees with n carets is equal to the nth Catalan number

cn = (2n)!
n!(n+1)! .

Each rooted binary tree has leaves. Formally, they are defined as follows: for the
one-vertex tree (which is called trivial), the only leaf coincides with the root. In case
T = (T1ˆT2), the set of leaves equals the union of the sets of leaves for T1 and T2. In this
case the leaves are exactly vertices of degree 1.

We will also need the concept of a height of a rooted binary tree. For the trivial tree,
its height equals 0. For T = (T1ˆT2), its height is htT = max(htT1,htT2) + 1.

Now we define a rooted binary forest as a finite sequence of rooted binary trees T1,
... , Tm, where m ≥ 1. The leaves of it are the leaves of the trees. It is standard from
combinatorics that the number of rooted binary forests with n leaves also equals cn. The
trees are enumerated from left to right and they are drawn in the same way.

A marked (rooted binary) forest is a (rooted binary) forest where one of the trees is
distinguished.

1.5. Thompson’s group F . We define the Richard Thompson group F in a combinatorial
way, using the following infinite group presentation

⟨x0, x1, x2, . . . | xjxi = xixj+1 (i < j) ⟩. (1.1)

This group was found by Richard J. Thompson in the 60s. We refer to the survey [10] for
details. (See also [6, 7, 8].) A recent survey on the subject with respect to the amenability
problem of F can be found in [30].
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It is easy to see from the relations of (1.1) that for any n ≥ 2, one has xn = x
−(n−1)
0 x1x

n−1
0

so the group is generated by x0, x1. It can be given by the following presentation with two
defining relations

⟨x0, x1 | x
x2
0

1 = xx0x1
1 , x

x3
0

1 = x
x2
0x1

1 ⟩, (1.2)

where ab = b−1ab by definition. Also we define a commutator [a, b] = a−1ab = a−1b−1ab
and notation a↔ b whenever a commutes with b, that is, ab = ba.

Each element of F can be uniquely represented by the normal form, that is, an expres-
sion of the form

xi1xi2 · · ·xisx−1
jt

· · ·x−1
j2
x−1
j1
, (1.3)

where s, t ≥ 0, 0 ≤ i1 ≤ i2 ≤ · · · ≤ is, 0 ≤ j1 ≤ j2 ≤ · · · ≤ jt and the following is true:
if (1.3) contains both xi and x−1

i for some i ≥ 0, then it also contains xi+1 or x−1
i+1 (in

particular, is ̸= jt).

Equivalent definitions of F can be given in terms of piecewise-linear functions. Although
these definitions are very popular, we do not describe it here since we will not use them in
our survey.

It is known from [25] that F is the diagram group over the simplest semigroup presentation⟨x |
x = x2 ⟩. This way to represent elements of F is very useful for many situations. Sometimes
it is preferable to use non-spherical diagrams over the same presentation instead of spherical
ones. The latter approach was described in [26]. Diagrams can be replaced by dual graphs.
This leads to a standard way to represent elements of F as pairs of rooted binary trees.
For the needs of this survey, it suffices to work with elements of the positive monoid M
repersenting them as marked binary forests according to Section 1.4.

The group F has no free non-abelian subgroups [6]. It is known [12] that F is not
elementary amenable. However, the famous problem about amenability of F remains open.
The question whether F is amenable was asked by Ross Geoghegan in 1979; see [19, 20].
There is no common opinion on the answer: some of specialists in this area try to prove
non-amenability, some of them believe that the group is amenable. There is a number of
papers with attempts to solve the problem in both directions. The author always believed
in non-amenability of F trying to prove this property. Now we are not sure on that answer,
the reasons will be explained later.

If F is amenable, then it is an example of a finitely presented amenable group, which is
not EA. If it is not amenable, then this gives an example of a finitely presented group, which
is not amenable and has no free non-abelian subgroups. Note that the first example of a non-
amenable group without free non-abelian subgroups has been constructed by Ol’shanskii [40].
The question about such groups was formulated in [13], it is also often attributed to von
Neumann [39]. Adian [1] proved that free Burnside groups with m > 1 generators of odd
exponent n ≥ 665 are not amenable. The first example of a finitely presented non-amenable
group without free non-abelian subgroups has been constructed by Ol’shanskii and Sapir [41].
Grigorchuk [24] constructed the first example of a finitely presented amenable group not in
EA.

It is not hard to see that F has an automorphism given by x0 7→ x−1
0 , x1 7→ x1x

−1
0 . To

check that, one needs to show that both defining relators of F in (1.2) map to the identity.
This is an easy calculation using normal forms. After that, we have an endomorphism of
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F . Aplying it once more, we have the identity map. So this is an (outer) automorphism of
order 2.

Later we will add more arguments to the importance of the symmetric set S = {x1, x̄1},
where x̄1 = x1x

−1
0 . Obviously, S also generates F . We let α = x−1

1 , β = x̄−1
1 = x0x

−1
1 . Ap-

plying Tietze transormations to (1.2) one can get a presentation of F in the new generating
set:

⟨α, β | αβ ↔ βα, αβ ↔ βα
2 ⟩. (1.4)

From the symmetry reasons we know that βα ↔ αβ2
also holds in F . Therefore, it is

a consequence of the two relations of (1.4). Moreover, one can check that for any positive
integers m, n it holds αβm ↔ βα

n
as a consequence of the defining relations.

We will often work with a positive monoid M of the group F . It is defined by the
monoid presentation that coincides with (1.1). The group F is the group of quotients of
this monoid so that F = MM−1. Elementary reasons show that any finite subset in F
can be moved into M up to a right multiplication by an element g ∈ F (see Lemma 3.8 in
Section 3).

2. Density of Cayley graphs

In [26] we constructed a family of finite subgraphs of the Cayley graph of F in the standard
generating set {x0, x1}. The densities of these subgraphs approach 3. In the Addendum
to the same paper we demonstrated a modification showing that the densities of finite
subgraphs can strictly exceed 3.

An essential improvement was made by Belk and Brown[4, 5]. They gave a family of
finite subgraphs depending on two integer parameters k ≥ 0 and n ≥ 1. Here the density
of the corresponding subgraphs in the same Cayley graph approaches 3.5.

We need an explicit definition of these sets. Let BB(n, k) denote the set of all marked
binary forests with n leaves, where all trees have height at most k. We regard it as a
subset of the left Cayley graph of F in standard generators. Let us describe how the group
generators act on the vertices (all actions are left partial ones).

The generator x0 acts by shifting the marker one position left if this is possible. Action
of x−1

0 means moving the marker one step to the right. The action of x1 is as follows. If
the marked tree is trivial, this is not applied. If the marked tree is T = (T1ˆT2), then we
remove its caret and mark the tree T1. It is easy to see that applying x̄1 = x1x

−1
0 means

the same replacing T1 by T2 for the marked tree (notice that x1 acts first).
Now one can see that x1 and x̄1 are totally symmetric. They generate F so one can

regard them as the most natural generators besides the standard ones.
The action of x−1

1 and x̄−1
1 is defined analogously. Namely, if the marked tree of a forest

is rightmost, then x−1
1 cannot be applied. Otherwise, if the marked tree T has a tree T ′′ to

the right of it, then we add a caret to these trees and the tree (T ˆT ′′) will be marked in
the result. Notice that if we are inside BB(n, k), then both trees T , T ′′ must have height
< k: otherwise x−1

1 cannot be applied. As for the action of x̄−1
1 , it cannot be applied if T is

leftmost. Otherwise the marked tree T has a tree T ′ to the left of it. Here we add a caret
to these trees and the tree (T ′ˆT ) will be marked in the result. As above, both trees T ′, T
must have height < k to be possible to stay inside BB(n, k).
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Let us define a sequence of polynomials by induction:

Φ0(x) = x (2.1)

Φk(x) = x+Φk−1(x)
2 k ≥ 1. (2.2)

Notice that Φk(x) is the generating polynomial for the set of trees of height at most k.
This means that the coefficient on xn in this polynomial shows the number of such trees
with n leaves. This follows directly from (2.2). The summand x corresponds to the trivial
tree (with one leaf); for the tree T = (T1ˆT2) of height ≤ k we have height ≤ k− 1 for each
of the trees T1, T2. By induction, the pair of them has generating function Φk−1(x)

2. This
agrees with (2.2).

It is easy to see that the equation Φk(x) = 1 has a unique positive root that we denote
by ξk. It is known that ξk approaches 1

4 as k → ∞. It is not hard to see that for a random

marked binary forest from BB(n, k), the probability to accept x0 or x−1
0 approaches 1 as

n→ ∞. As for x1 and x−1
1 , the probability for a random vertex in the automaton BB(n, k)

to accept it approaches 1
4 for n≫ k ≫ 1. The same holds for symmteric generators x̄1 and

x̄−1
1 .

It follows from these remarks that the density of the Cayley graph of F in standard
generators {x0, x1} is at least 3.5 since x±1

0 are almost always accepted, and each of the

x±1
1 is accepted with probability close to 1

4 . In other terms, it follows that ι∗(F,A) ≤ 1
2 for

A = {x0, x1}. This was a remarkable result obtained by Belk and Brown in [4, 5].
If we look from the same point of view to the symmetric generating set {x1, x̄1}, then

we see that the density of finite subsets BB(n, k) will approach 3 for n≫ k ≫ 1. However,
this is not the best estimate.

Let we have a marked forest of the form . . . , T−1, T0, T1, . . ., where T0 is marked. Sup-
pose that T0 is a trivial tree and each of the neighbour trees T−1, T1 has height k. In this
case no generator of the form x±1

1 or x̄±1
1 can be accepted by such a vertex in the automaton.

This means that such vertices are isolated in BB(n, k) as a subgraph of the left Cayley of F
in the symmetric generating set. The event to get an isolated vertex holds with guaranteed
probability p > 0, where p is a constant. Therefore, if we remove such vertices from the
automaton, then the density will necessarily increase. Here is the main result from [27].

Theorem 2.1 ([27]). The density of the Cayley graph of Thompson’s group F in symmetric
generating set S = {x1, x̄1} is strictly greater than 3.

Notice that this trick give nothing for increasing density in case of standard generating
set. Indeed, almost all vertices in BB(n, k) accept both x0 and x−1

0 . So if we remove a
vertex isolated in the previous graph, we will need to remove 4 directed edges incident to
it. This never has an effect of increasing density.

Let us mention one more result of the same paper. It concerns another symmetric set
with the generator x0 added. Notice that this fact was improved in our latest papers.

Theorem 2.2. For the symmetric generating set S = {x0, x1, x̄1}, there exists finite subsets
Y ⊂ F in the Cayley graph of Thompson’s group F such that |∂Y | < |Y |.

Equivalently, the generating set S does not have doubling property, that is, there are
finite subsets Y in F such that the 1-neighbourhood N1(Y ) = (S±1 ∪ {1})Y has cardinality
strictly less than 2|Y |.

In [32] we introduced the concept of an evacuation scheme on a Cayley graph. Let we
have an infinite group G generated by a finite set A. Let Γ = C(G;A) be its Cayley graph
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(right or left). To each vertex v we assign an infinite simple path pv starting at v in the
Cayley graph. Suppose that there exists a constant C such that each directed egde e can
participate in these paths at most C times. In this case we say that the family (pv)v∈G is
an evacuation scheme on the Cayley graph Γ.

To be more precise: we claim that the total number of occurrences of each edge e in
paths of the form pv (v ∈ G) does not exceed C.

Roughly speaking, the paths pv bring all verties to infinity. Without any restrictions,
such an object always exists. However, if we claim that each edge participates in the
scheme a uniformly bounded number of times, then we get the property equivalent to non-
amenabilty. The following statement easily follows from known criteria.

Proposition 2.3 ([32]). A group G with finite generating set A is non-amenable if and
only if there exists an evacuation scheme on its Cayley graph.

Suppose that we have an evacuation scheme with constant K on the Cayley graph
Γ = C(G;A). Let Y be a finite nonempty subset of G. We know that each path pv (v ∈ Y )
must leave Y at some step. Hence there exists an initial segment p̄v of pv that has its
terminal point on ∂Y . This leads to the concept of an evacuation scheme with constant K
on a finite subgraph. This is a collection of paths in Y of the form p̄v. This finite path starts
at v and ends on the inner boundary ∂Y . For each edge e we claim that the total number
of its occurrences in the paths p̄v (v ∈ Y ) does not exceed K.

Having an evacuation scheme on Y , we can assume that paths p̄v are simple (otherwise
we can remove some loops). Also we can claim that if e occurs in the evacuation paths,
then e−1 does not occur. Indeed, if p̄v = p1ep2, p̄u = p3e

−1p4, then one can replace these
evacuation paths by p1p4, p3p2, respectively.

The following fact easily follows from König’s Lemma [37].

Proposition 2.4 ([32]). Let G be an infinite group generated by a finite set A. An evacu-
ation scheme on the Cayley graph Γ = C(G;A) exists if and only if there exist evacuation
schemes on all its finite nonempty subgraphs. The constants for both cases are the same.

An important case of an evacuation scheme happens if C = 1 in the definition. In this
case we say that we have a pure evacuation scheme on the Cayley graph. This means that
each directed edge can participate in evacuation paths of the form pv at most once. We
obtained a criterion for existing of such a scheme.

Theorem 2.5 ([32]). Let G be an infinite group generated by a finite set A. A pure evacu-
ation scheme on the Cayley graph Γ = C(G;A) exists if and only if the group G is strongly
non-amenable with respect to A, that is, its Cheeger isoperimetric constant is at least one:
ι∗(G;A) ≥ 1.

The following statement improves one of our previous results.

Theorem 2.6 ([32]). The Cheeger isoperimetric constant of the Cayley graph of Thompson’s
group F in extended symmetric generating set {x0, x1, x̄1} is strictly less than 1.

According to Theorem 2.5, this means that there is no pure evacuation scheme on the
Cayley graph of F in these generators.

The construction used in the proof of Theorem 2.5 was almost the same as the one
from [27]. It looked like the estimate 3.5 for the density in standard generators could not
be exceeded. Many attepts to do that since 2004 led to an opinion that the construction by
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Belk and Brown was optimal. This was mentioned by Burillo in [9]; the author discussed
this with Jim Belk on some conferences. In [32] we even formulated a conjecture that
i∗(F ;A) =

1
2 for the standard generating set A = {x0, x1}. However, it turned out that the

conjecture was false.
In [33] we got an improvement of the above estimate. The main result sounds as follows.

Theorem 2.7 ([33]). The density of the Cayley graph of Thompson’s group F in the stan-
dard set of generators {x0, x1} is strictly greater than 3.5. Equivalenly, the Cheeger isoperi-
metric constant of F in the same set of generators is stricltly less than 1

2 .

The basic idea of the proof is as follows. The subset BB(n, k) of the left Cayley graph
of F has some fragments with small density. The probability to meet such a fragment has a
positive uniform lower bound. If we remove such fragments from the subgraph, we increase
its density exceeding the value 3.5.

Let us describe the fragments we are interested in. Let we have a rooted binary forest
. . . , T0, T1, T2, T3, T4, . . . , where T0 is marked and all trees have height at most k. We claim
that trees Ti (0 ≤ i ≤ 4) exist in this forest, and the following conditions hold:

• T0 and T2 are trivial trees,
• T1 and T3 have height k,
• T4 is a nontrivial tree.

The latter condition is added for simplicity. A forest satisfying the listed conditions is
called special. To each of these forests we assign vertices a, b, c of the left Cayley graph
of F in the standard generating set. Here a corresponds to the forest with T0 as a marked
tree; b and c denote the forests where T1 and T2 are marked trees, respectively.

In the left Cayley graph of F in standard generators these vertices look as follows:h h h� �� �

?
a b cx0 x0 x0 x0

x1

Since the tree T0 is empty, we cannot remove a caret from it. This means that a does
not accept x1 in the automaton BB(n, k). The tree T1 has height k so a caret cannot be
added to T0 and T1 to stay within BB(n, k). So a can accept only letters x0 and x−1

0 .
Exactly the same situation holds for the vertex c. Notice that the leftmost edge labelled by
x0 may not belong to the subgraph if T0 is the leftmost tree in the special forest.

As for the vertex b, we can remove the caret from T1 so b accepts x1. However, it does
not accept x−1

1 since the tree T1 has height k and no caret can be added to T1 and T2. Thus
a, c have degree 2 in BB(n, k) and b has degree 3 in the same subgraph.

If we have another special forest with the corresponding vertices a′, b′, c′, then no
coincidences of vertices can occur. The only case could be a′ = c (or a = c′, which is totally
symmetric). However, this is impossible by the choice of the tree T4 in the special forest.
If we go from a′ by a path labelled by x−2

0 , then we meet vertex c′ that corresponds to the
trivial tree. Going along the path with the same label from c, we get the forest with marked
tree T4, which is nontrivial by definition. So this condition allows us to avoid repetitions.

Using properties of generating functions, we estimate the probability to meet a special
forest. It turns out that the probability has a lower bound p = 1

1200 . This leads to finite
subgraphs in the Cayley graph of F with density exceeding 3.5004.

The size of the set we deal with is very huge: we estimate is as 22
7200

. Recall that,
according to [38], the size of Folner sets in F (provided it is amenable) has a very fast
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growth: as a tower of exponents. We think that Theorem 2.7 increases the chances for the
group F to be amenable.

Our construction disproves one more conjecture from [32]. We thought that the Cayley
graph of F for the set {x0, x1, x2} of generators has density 5. In this case the Cheeger
isoperimteric constant is 1 so there exists a pure evacuation scheme on the graph according
to Theorem 2.5. However, the following fact is true.

Theorem 2.8 ([33]). The Cheeger isoperimetric constant of the Cayley graph of Thompson’s
group F in the generating set {x0, x1, x2} is strictly less than 1. Equivalently, the density
of the corresponding Cayley graph strictly exceeds 5.

This means that there are no pure evacuation schemes on the Cayley graph of F in
these generators.

The fragment of the left Cayley graph of F in generators {x0, x1, x2} will look as in
Figure 1 for any special forest (we keep previous notation).

��
��

��
��

��
��

� �� �

?

a b c
x0 x0 x0 x0

x1
? ?
x2 x2

Figure 1: Fragment of the left Cayley graph of F in generators {x0, x1, x2} for any special
forest.

Notice that trees T1, T3 of the special forest have height k. So no carets can be placed
over any pair of trees of the form Ti, Ti+1, where 0 ≤ i ≤ 3. This explains why no edges
labelled by x−1

1 , x−1
2 can be accepted by vertices in the picture. The vertex a corresponds

to a trivial marked tree so it does not accept x1. However, it accepts x2 since the tree to
the right of T0 has a caret. A similar situation holds for the vertex c. As for b, it accepts
x1 but it does not accept x2 since the tree T2 to the right of the marked tree T1 is empty.

The condition on the tree T4 allows us to avoid repetitions of vertices a, b, c for different
special forests.

Now we are subject to remove vertices of the form a, b, c for all special forests. We
also remove geometric edges incident to these vertices. For 3 vertices we remove no more
than 14 directed edges from the graph. The key point here is inequality 14

3 < 5. Here 5 is
the limit of densities for BB(n, k) considered as subgraphs in the left Cayley graph of F
in generators {x0, x1, x2}. In the previous Section the same rôle was played by inequality
10
3 < 3.5.

3. Equations in group rings and their systems

Tamari [44] shows that if a group G is amenable, then the group ring R = K[G] satsfies the
Ore condition for any field K. This means that for any a, b ∈ R there exist u, v ∈ R such
that au = bv, where u ̸= 0 or v ̸= 0.

This stament can be easily generalized. Suppose that instead of one linear equation
au = bv with coefficients in R we have a system of them, where the number of variables
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exceeds the number of equations: a11u1 + · · · + a1nun = 0
· · · · · · · · ·

am1u1 + · · · + amnun = 0

where n > m, aij ∈ R for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. We are interested in solutions
(u1, ..., un) ∈ Rn.

Cardinality arguments based on the Følner criterion show that for amenable group G,
this system always has a nonzero solution.

In [3] Bartholdi shows that the converse to the above statement is true. This gives a
new criterion for amenabilty of groups. Although Theorem 1.1 in [3] concerns the so-called
GOE and MEP properties of automata (Gardens of Eden and Mutually Erasable Patterns),
the proof of it allows one to extract the following statement.

Theorem 3.1 ([3]). (Bartholdi) For any group G, the following two properties are equaiva-
lent.

(i) G is amenable
(ii) For any field K and for any system of m linear equations over R = K[G] in n > m

variables, there exists a nonzero solution.

In the Appendix to the same paper, Kielak shows that if the group ring K[G] has no
zero divisors, both properties are equivalent to the Ore condition. In particular, this holds
for R.Thompson’s group F . It is orderable, so there are no zero divisors in a group ring
over a field. So we quote the following

Theorem 3.2 ([3]). (Kielak) The group F is amenable if and only if the group ring K[F ]
over any field satisfies the Ore condition.

Let M be a cancellative monoid. It is known from [44] that if M is left amenable then
the monoid ring K[M ] satisfies Ore condition, that is, there exist nontrivial common right
multiples for the elements of this ring. In [16] Donnelly shows that a partial converse to
this statement is true. Namely, if the monoid Z+[M ] of all elements of Z[M ] with positive
coefficients has nonzero common right multiples, then M is left amenable. He asks whether
the converse is true for this particular statement.

In [28] we show that the converse is false even for the case of groups. Say, if M is a free
metabelian group, then M is amenable but the Ore condition fails for Z+[M ]. Besides, we
study the case of the monoid M of positive elements of Thompson’s group F . Notice that
the amenability problem for the group F is equivalent to left amenability of the monoid M ;
on the other hand, it is known that M is not right amenable [23]. We show that for this
case the monoid Z+[M ] does not satisfy Ore condition. That is, even if F is amenable, this
cannot be shown using the above sufficient condition.

The proof was based on the following

Lemma 3.3 ([28]). Let M be a monoid embeddable into a group G. Suppose that the
monoid Z+[M ] has nonzero common right multiples. Then for any a, b ∈ M there exists a
relation of the form a±1b±1 . . . a±1b±1 = 1 that holds in G.

On the other hand, we prove that this property does not hold ifM is the free metabelian
group with basis {a, b}. This implies
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Theorem 3.4 ([28]). There exists a left amenable cancellative monoid M (actually, an
amenable group) such that the monoid Z+[M ] does not satisfy the Ore condition.

The following property of the group F clarifies the situation for it with respect to
Donnelly’s condition.

Lemma 3.5 ([28]). Let x0, x1, ... , xm, ... be the standard generating set for R.Thompson’s
group F . Then any word of the form w = x±1

i1
x±1
j1
. . . x±1

ik
x±1
jk

(k ≥ 1) does not represent the
identity element of F provided all i1, ... , ik are even and all j1, ... , jk are odd.

Here is the consequence of the above statements:

Theorem 3.6 ([28]). Let M be positive monoid of R.Thomspon’s group F . Then Z+[M ]
does not satisfy Ore condition.

Now let us review the results from [29]. First of all, the group F can be replaced by
the monoid M in the statement of the Ore condition:

Lemma 3.7 ([29]). For any field K, the group ring K[F ] satisfies the Ore condition if and
only if the monoid ring K[M ] satisfies the Ore condition.

This means the we can just forget about negative powers of variables working in the
ring of skew polynomials satisfting xjxi = xixj+1 for 0 ≤ i < j. This follows from an
elementary fact that any finite subset in F can be sent into M under right multiplication.
More precisely:

Lemma 3.8. For any g1, ..., gn ∈ F there exists g ∈ F such that g1g, . . . , gng ∈M .

Another step is to reduce the Ore equation au = bv in K[M ] to the case when a, b are
homogeneous polynomials of the same degree.

Lemma 3.9 ([29]). Suppose that any equation of the form au = bv has a nonzero solution in
K[M ] provided a, b are homogeneous polynomials of the same degree. Then K[M ] satisfies
the Ore condition.

Now we have a bunch of equations in K[M ] indexed by two parameters. The first one
is d, the degree of homogeneous polynomials a and b. The second one is m, where m is
the highest subscript in variables we involve. The general strategy can be the following: we
try to solve as much equations in K[M ] as we can, using this classification. For a pair of
numbers d ≥ 1, m ≥ 1, we can take a, b as linear combinations of monomials of degree d in
variables x0, x1, ... , xm with indefinite coefficients. We can think about these coefficients
as elements of the field of rational functions over K with a number of variables.

More precisely, we can state the general problem as follows. Any finite system of
monomials of degree d ≥ 1 is contained in a set of the form Sm+1,m+d+1 for some m ≥ 1.
This set consists of all elements in the monoid M with normal forms xi1 . . . xid , where
i1 ≤ · · · ≤ id and i1 ≤ m, i2 ≤ m + 1, ... , id ≤ m + d − 1. Let K[S] denote the set of all
linear combinations of elements of S ⊂ M with coefficients in K. (Strange parameters in
the notation we use is explained by the following reason: if we represent elements of M by
positive semigroup diagrams, then the set of them will consists of (xm+1, xm+d+1)-diagrams.)

Problem Pd,m: Given two elements a, b ∈ K[Sm+1,m+d+1], find a nonzero solution of
the equation au = bv, where u, v ∈ K[M ], or prove that it does not exist.
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According to Theorem 3.2 by Kielak, and Lemma 3.9 on homogeneous equations, we
have the following alternative. If the Problem Pd,m has positive solution for any d,m ≥ 1
(that is, we can find nonzero solutions), then the group F is amenable. If this Problem has
negative solution for at least one case, then F is not amenable.

We start with the case of polynomials of degree d = 1 for arbitrary m. Let us consider
equations of the form

(α0x0 + α1x1 + · · ·+ αmxm)u = (β0x0 + β1x1 + · · ·+ βmxm)v. (3.1)

We show that all of them have nonzero solutions inK[M ] for arbitrary coefficients αi, βi ∈ K
(0 ≤ i ≤ m). This follows from cardinality reasons, see [29, Section 2]. However, this
approach gives us soultions of very high degree. More precisely, we prove the following

Theorem 3.10 ([29]). a) For any m ≥ 1, the set of elements Xm = {x0, x1, ..., xm} is not
doubling, that is, there exists a finite subset Y ⊂M such that |XmY | < 2|Y |.

b) If a, b ∈ K[M ] are linear combinations of monomials x0, x1, ... , xm of degree 1,

then the equation au = bv in k[M ] has a nonzero solution, where deg u = deg v ≤ m(m+1)
2 .

This means that Problem P1,m has positive solution for any m ≥ 1. However, the
degree of u, v have quadratic growth with respect to m. This estimate can be essentially
improved that will be shown later. Before doing that, we mention the following fact that
follows from cardinality reasons.

Theorem 3.11 ([29]). The equation of the form

(α00x
2
0+α01x0x1+α02x0x2+α11x

2
1+α12x1x2)u = (β00x

2
0+β01x0x1+β02x0x2+β12x

2
1+β12x1x2)v

in the monoid ring K[M ] has a nonzero solution, where deg u, v ≤ 41.

This means that Problem P2,1 has positive solution. The cases that come after that are
already unknown. This is d = 2, m = 2, where a, b are linear combinations of 9 monomials
of degree 2:

x20, x0x1, x0x2, x0x3, x
2
1, x1x2, x1x3, x

2
2, x2x3.

This is one possible candidate to obtain the negative answer. If, nevertheless, this Problem
P2,2 has positive answer (that is, there exist nonzero solutions), then one can try Problem
P3,1, where a, b are linear combinations of 14 monomials of degree 3:

x30, x
2
0x1, x

2
0x2, x

2
0x3, x0x

2
1, x0x1x2, x0x1x3, x0x

2
2, x0x2x3, x

3
1, x

2
1x2, x

2
1x3, x1x

2
2, x1x2x3.

The further strategy can be as follows: starting from equations of a simple form, we
try not only to prove they have nonzero solutions (which is not so hard), but also try to
describe somehow the set of all their solutions.

Say, if we have equation of the form au = bv, where a = α0x0 + α1x1, b = β0x0 + β1x1,
then the description of all its solutions is easy. Namely, u = (β0x0 + β1x2)w, v = (α0x0 +
α1x2)w for any w ∈ R = K[M ]. This means that the intersection of two principal right
ideals aR ∩ bR is a principal right ideal.

We also know how to describe all solutions of the equation (α0x0 + α1x1 + α2x2)u =
(β0x0 + β1x1 + β2x2)v. This will be done later. For this case, the description will be more
complicated. In particular, the intersection aR ∩ bR is no longer a principal right ideal.

If instead of one equation we have a system of equations of the form

(α1x0 + β1x1)u1 = (α2x0 + β2x1)u2 = · · · = (αkx0 + βkx1)uk
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for any k ≥ 2, then it also has a nonzero solution. Indeed, the product

(α1x0 + β1x1)(α1x0 + β1x2) · · · (αkx0 + βkxk+1)

is left divisible by αix0 + βix1 for any 1 ≤ i ≤ k, which can be checked directly.

A much more interesting example of a system of equations looks as follows. Let us state
it as a separate problem.

Problem Qk: Given k+1 linear combinations of elements x0, x1, x2, consider a system
of k equations with k + 1 unknowns:

(α0x0 + β0x1 + γ0x2)u0 = (α1x0 + β1x1 + γ1x2)u1 = · · · = (αkx0 + βkx1 + γkx2)uk.

Find a nonzero solution of this system, where u0, u1, . . . , uk ∈ K[M ], or prove that it does
not exist.

Notice that Q1 has been already considered. To solve Q2 in positive, it suffices to find
a finite set Y with the property |AY | < 3

2 |Y |, where A = {x0, x1, x2}. This can be done
by cardinality reasons similar to the ones used in the proof of Theorem 3.11. The estimate
there will be also n ≥ 45. In fact, we are able to prove a much stronger fact. Namely, using
the result of [27], we can construct a finite set Y with the property |AY | < 4

3 |Y |. The size
of Y is really huge, it does not have transparent description. This immediately implies that
Problem Q3 has a positive solution.

Theorem 3.12 ([31]). Let A = {x0, x1, x2}. Then there exists a finite subset S ⊂ F
satisfying |AS| < 4

3 |S|.

As an immediate corollary, we have

Corollary 3.13 ([31]). Let R = K[F ] be a group ring of F over a field K. For any 4 linear
combinations of elements x0, x1, x2 with coefficients in K, the system of 3 equations with
4 unknowns

(α0x0+β0x1+γ0x2)u0 = (α1x0+β1x1+γ1x2)u1 = (α2x0+β2x1+γ2x2)u2 = (α3x0+β3x1+γ3x2)u3

has a non-zero solution in R.

Donnelly shows in [17] that F is non-amenable if and only if there exists ε > 0 such that
for any finite set Y ⊂ F , one has |AY | ≥ (1 + ε)|Y |, where A = {x0, x1, x2} (see also [15]).
For the set Y here, one can assume without loss of generality that Y is contained in S4,n

for some n. This gives some evidence that the amenability problem for F has very close
relationship with the family of Problems Qk. The case k = 4 looks as a possible candidiate
to a negative solution (that is, all solutions are zero). If true, this will imply that the
constant ε = 1

4 fits into the above condition.

Now we give an improved version of Theorem 3.10.

Theorem 3.14 ([29]). The equation

(α0x0 + α1x1 + · · ·+ αmxm)u = (β0x0 + β1x1 + · · ·+ βmxm)v

has a nonzero solution, where u, v are homogeneous polynomials of degree m in variables
x0, x1, . . . , x2m.
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According to our strategy, we are interested in describing the set of all solutions to the
above equation. This is easy to do for m = 1. Let m = 2. The equation from Theorem 3.14
can be rewritten as

(x0 + αx2)u = (x1 + βx2)v, (3.2)

up to a linear transformation, where α, β are some coefficients. We will assume both of
them are nonzero: otherwise the description becomes trivial.

First of all, we take a solution of this equation extracted from the proof of Theorem 3.14.
One can check directly that the following polynomials satisfy (3.2):

u0 = βx0x3 + β2x0x4 − αx1x3 − αβx1x4 − αβx23 − αβ2x3x4,

v0 = βx20 − αx0x1 − α2x23 − α2βx3x4.

We say that (u0, v0) is a basic solution. Now we are going to show how to extract all
solutions from it.

ByM1 we denote the submonoid ofM generated by x1, x2, ... . We prove the following
lemma using the same ideas as in the number-theoretical Remainder Theorem.

Lemma 3.15 ([29]). For any v ∈ K[M ] there exist w1 ∈ K[M ], w2, w3 ∈ K[M1] such that
v = v0w1 + x0w2 + w3.

Let us denote by ϕ an endomorphism of F that takes each xi to xi+1 (i ≥ 0). The
description of the set of solutions for (3.2) can be reduced to the case when α = β. Namely,
if (u, v) is a solution for (3.2) with d = deg u = deg v > 1, then the following equalities hold:{

u = u0w1 + α−1(x1 + βx3)ϕ(u
′)

v = v0w1 + α−1x0ϕ(v
′) + x3ϕ(u

′)
(3.3)

where (u′, v′) is a solution of the equation (3.2) with α = β, and deg u′ = deg v′ = d− 1. So
the problem can be reduced to the case when α = β in the equation. For this case we have
the following inductive decription.

Theorem 3.16 ([29]). Let β ̸= 0 be an element of a field K. Let us consider the equation
(x0 + βx2)u = (x1 + βx2)v in the monoid ring K[M ]. Let

u0 = x0x3 + βx0x4 − x1x3 − βx1x4 − βx23 − β2x3x4,

v0 = x20 − x0x1 − βx23 − β2x3x4
be its basic solution.

Then for any its solution, one has the following presentation for its first unknown:

u = u0w0+(x1+βx3)ϕ(u0)w1+(x1+βx3)(x2+βx4)ϕ
2(u0)w2+· · ·+

k∏
i=1

(xi+βxi+2)ϕ
k(u0)wk,

where k ≥ 0, and wi belongs to K[Mi], where Mi is the submonoid of M generated by
xi, xi+1, . . . (0 ≤ i ≤ k).

Notice that if we know u, then the second unknown v is determined uniquely since the
group ring K[F ] over a field has no zero divisors.

Now let us review the results of [31] that continue the above research. We are going to
consider equations and their systems in the group ring K[F ] of the group F over a field K.
Ring coefficients of the equations will not be assumed to be homogeneous polynomials in
K[M ].
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Let we have a group word w = ξ1ξ2 . . . ξn where ξi ∈ {x±1
0 , x±1

1 }. Suppose that w = 1
in F . Let gi = ξi . . . ξn for 1 ≤ i ≤ n and gn+1 = 1. We see that (g1 − g2) + (g2 − g3) +
· · · + (gn − gn+1) = g1 − gn+1 = w − 1 = 0 in the group ring K[F ]. On the other hand,
gi− gi+1 = (ξi− 1)gi+1 for all 1 ≤ i ≤ n. Elements of the form ξi− 1 are equal to −(1−x0),
−(1− x1), (1− x0)x

−1
0 , (1− x1)x

−1
1 . Therefore, the above equation can be rewritten in the

form (1− x0)u = (1− x1)v, where u, v ∈ K[F ]. Elements u, v are defined uniquely by the
relation w = 1 in F .

Recall that amenability of an m-generated group G can be characterized in terms of
its cogrowth rate. Let A be a generating set for G, where |A| = m. Denote by Pn the
number of group words over A of length n representing the trivial element of G. Then G
is amenable if and only if lim sup

n→∞
n
√
Pn = 2m. This is a famous Kesten criterion [35, 36]. If

P̄n the number of reduced group words over A of length n trivial in G, then G is amenable

if and only if lim sup
n→∞

n
√
P̄n = 2m− 1. This is Grigorchuk criterion [22].

According to these remarks, we see that it is useful to know the description of all
solutions to the equation (1 − x0)u = (1 − x1)v in the group ring of F . If we take one of

the defining relations of F , namely, x
x2
0

1 = xx0x1
1 , and apply to it the above procedure, then

we get to the following equation in the group ring of F :

(1− x0) · (1− x1)(1 + x1 − x2) = (1− x1) · (1− x3 − x20 + x0x1).

We call the pair (u, v) a basic solution of the equation (1 − x0)u = (1 − x1)v, where u =
(1−x1)(1+x1−x2), v = 1−x3−x20+x0x1. Now we are going to get all solutions in terms
of the basic one. It suffices to present u in its general form since v is uniquely determined
by u.

Theorem 3.17 ([31]). Let R = K[F ] be a group ring of F over a field K. Let

u0 = (1 + x0 − x1)(1− x3),

u1 = (1− x1)ϕ(u0) = (1− x1)(1 + x1 − x2)(1− x4),

. . .

uk = (1− x1)ϕ(uk−1) = (1− x1) . . . (1− xk)(1 + xk − xk+1)(1− xk+3)

. . .

Then for any solution of the equation (1−x0)u = (1−x1)v in R, the element u belongs
to the right R-module generated by u0, u1, u2, . . . . Moreover, for any solution in the
monoid ring K[M ], one can express it as u = u0r0 + u1r1 + · · · + ukrk for some k and
elements ri ∈ K[Mi] (0 ≤ i ≤ k).

It turns out that the equation (1 − x0)u = bv has a non-zero solution for any element
b ∈ K[F ].

Theorem 3.18 ([31]). Let R = K[F ] be a group ring of F over a field K. Then for any
element b ∈ R, the equation (1− x0)u = bv has a non-zero solution in R.

The proof is based on the following fact that looks interesting in itself.

Theorem 3.19 ([31]). Let b ∈ K[M ] be any element in the monoid ring R = K[M ]. Then
the set B = {b, ϕ(b), ϕ2(b), · · · } is not a free basis of the right R-module it generates.

Notice that we do not know whether any equation of the form (1 − x1)u = bv has a
nontrivial solution. So we asked the following
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Question 3.20. Let R = K[F ] be a group ring of F over a field K. Is it true that for any
element b ∈ R, the equation (1− x1)u = bv has a non-zero solution in R?

Using the automorphism x0 7→ x−1
0 , x1 7→ x̄1 = x1x

−1
0 , one can reduce the above

problem to the case of equation (x0 − x1)u = bv, where b ∈ K[M ].
We can extract from Theorem 3.18 the following

Corollary 3.21 ([31]). For any m ≥ 1 there exists a non-zero solution to the system of
equations

(1− x0)u0 = (1− x1)u1 = · · · = (1− xm)um (3.4)

in the group ring of F .

The union of supports of the elements u0, u1, . . . , um ∈ K[F ] is a multi-dimensional
analog of a relation in F . An explicit form of this finite subset or even its size are unknown
already for the case m = 2.

One more general criterion for non-amenability of a group can be presented in terms of
group series. Let G be a group generated by a finite set A = {a1, . . . , am}. For any field K
we denote by K[[G]] the space of infinite sums of the form∑

g∈G
α(g) · g,

where α(g) ∈ K are coefficients (g ∈ G). Obviously, G acts on the left and on the right on
this space. These actions can be naturally extended to the group ring. This gives K[[G]]
the structure of a K[G]-bimodule. For the application we need, we assume that K = R will
be the field of reals (or rationals, if necessary).

Theorem 3.22 ([31]). Let G be a group generated by A = {a1, . . . , am}. Then G is non-
amenable if and only if there exists an equality in the left R[G]-module R[[G]] of the form∑

g∈G
g = (1− a1)S1 + · · ·+ (1− am)Sm,

where S1, . . . , Sm are elements of R[[G]] with uniformly bounded coefficients.

In partucular, this is applied to F , where we need an equality of the form
∑
g∈F

g =

(1 − x0)u + (1 − x1)v, where u, v are infinite group series from R[[F ]] with uniformly
bounded coefficients.

4. Miscellaneous

In this section we describe several results from [30] concerning the group F . They involve
a simple description of exhausting finite fragments of the Cayley graphs as well as a new
algorithm for solving the word problem in this group. We have already mentioned that, in
the context of the amenability problem, instead of describing the infinite Cayley graph it is
sufficient to describe finite subgraphs that contain balls of arbitrarily large radius. Moreover,
it is enough to consider such finite fragments within the monoid M of positive elements.
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4.1. Structure of Cayley graphs. One of the inductive descriptions of finite fragments
of the Cayley graph was given in [26] in connection with producing a family of subgraphs
whose density approaches 3. A fairly standard tool for working with the group is also a
representation of its elements as marked rooted binary forests, which we used in Section 2 in
the description of the Belk-Brown construction. First of all, we will show how to associate
with every marked rooted binary forest an ordered triple of trees, which can be done in a
fairly natural way.

Suppose that we are given a marked rooted binary forest, the trees of which are denoted
as T−k, . . . , T−1, T0, T1, . . . , Tm, where k,m ≥ 0 and the marked tree is T0.

We add to this forest one-point trees on the left and on the right, denoting them by
T−(k+1) and Tm+1, respectively. We further add carets, attaching them consecutively to
the two rightmost trees without touching the tree T0 and proceeding until there is exactly
one tree on the right of T0. In doing so we add m carets. We conduct exactly the same
procedure on the left, adding k carets. Namely, we consecutively attach a new caret to the
two leftmost trees until there is exactly one tree on the left of T0. The result of this process
is a triple of rooted binary trees. The tree that was initially marked remains in the middle
in an unaltered form.

Let n denote the total number of leaves in the triple of trees. Clearly, n ≥ 3, and it
is easy to see from elementary combinatorial considerations that the number of triples of
trees for this n can be expressed in terms of the Catalan numbers as

cn−1 − cn−2 =
3(2n− 4)!

n!(n− 3)!
.

Let us define a graph Γn. Its vertices are the ordered triples of rooted binary trees
described above with total number of leaves equal to n ≥ 3. The edges correspond to the
actions of the generators that we shall now describe.

Multiplication of an element of the group on the left by x0 corresponds to the following
operation: we remove the leftmost caret, obtaining a quadruple of trees, and place a caret
on the two rightmost trees. Such an operation is applicable if the first tree of the triple
is non-trivial. Multiplication on the left by x−1

0 is defined similarly. Multiplication of an
element of the group on the left by x1 corresponds to the following operation: we remove the
middle caret, obtaining a quadruple of trees, and place a caret on the two rightmost trees.
Such an operation is applicable if the second tree of the triple is non-trivial. Multiplication
on the left by x−1

1 is defined similarly.
Here we can observe that the operation of multiplication on the left by the symmetric

generator x̄1 = x1x
−1
0 corresponds to removing the middle caret and then moving it to

the left rather than to the right. In this example we clearly see this type of symmetry. It
corresponds to the outer automorphism of F defined by the rule x0 7→ x−1

0 , x1 7→ x̄1.
Thus, Γn becomes a subgraph of the left Cayley graph of F . The procedure of moving

the carets (the application of the generators in the set {x±1
0 , x±1

1 , x̄±1
1 }) somewhat resembles

the well-known “Tower of Hanoi”.
The structure of these graphs is quite convenient for working with the group, especially

for constructing flows on the Cayley graphs. As we already know, it is sufficient to do
this on expanding finite fragments. The verification of the fact that graphs of the form Γn

contain balls of arbitrarily large radii is fairly easy.
We proceed to describe a simpler model for fragments of the Cayley graph. In the graph

Γn the vertices are fairly complicated geometric objects, namely, triples of trees. We shall



3:20 V. Guba Vol. 15:1

now achieve a situation where the vertices of the graph are ordinary geometric points. The
edges will have an equally simple look. We consider the disjoint union of all rooted binary
trees with a given number of carets equal to n. Then we have cn such trees. Consider an
arbitrary vertex v of one of the trees. If it is not the uppermost one, then it occurs as part
of exactly one caret situated over this vertex. We paint this caret red. If its top point is
not the root of the tree, then we again consider the caret situated above this vertex and
also paint it red. We continue the process until we reach the root of the tree. We begin
removing the painted set of carets proceeding downwards from the top until we reach v. We
shall obtain a rooted binary forest, which we turn into a marked forest by distinguishing
the tree with root v. Such a procedure can be followed for any vertex of any of the trees.

We say that two vertices are equivalent if the procedure described above results in the
same picture, that is, in the same marked rooted binary forest. Obviously, this relation ∼
on the set of vertices of all the trees under consideration is indeed an equivalence. (It is easy
to observe that the total number of vertices in our disjoint union is equal to (2n + 1)cn.)
We take all the available vertices and identify equivalent ones, obtaining the vertices of a
new graph. The edges will have the following structure: for every caret consisting of a left
and a right segment, we place arrows on these line segments proceeding downwards from
the top and mark the left segment with the letter x1 and the right segment with x̄1. It
is understood that the edges connecting pairs of respectively equivalent vertices are also
identified. What we have constructed is a subgraph of the left Cayley graph of F in the
symmetric system of group generators {x1, x̄1} in a, so to speak, ‘scattered’ form. The same
vertex of the graph can occur as many copies, and the same applies for the edges. We can
trace how many times the same vertex v appears in the trees under consideration. If, after
removing the upper carets, we obtained a forest in which s trees are situated to the left of

v, and there are t trees to the right of v, then the vertex v occurs as (s+t)!
s!t! copies. This fact

is easily proved by induction on s+ t by using the properties of binomial coefficients.
We summarize what has been said above in the form of a separate assertion.

Theorem 4.1 ([30]). The disjoint union of all trees with n ≥ 0 carets and with the equiv-
alence relation ∼ on the set of its vertices defines a subgraph of the left Cayley graph of
the group F with the set of generators {x1, x̄1}, which is isomorphic to the graph Γn+3.
Furthermore, all the left segments of the carets have label x1, and the right ones have label
x̄1 (in the direction from the top of the caret).

We point out that edges with label x0 do not, in fact, disappear anywhere: they can be
added if we associate a triangle with every caret, and then an edge marked x0 will go from
right to left. We also emphasize that paths in the Cayley graph can now be depicted on
the trees themselves, and we can ‘jump’ from any vertex to an equivalent one to continue
the path. Earlier, for an image of a path in the graph Γn, we had to draw all the vertices
occurring in it in the form of complicated pictures, whereas this is no longer necessary in
the new model.

4.2. Algorithm for the word problem. We now proceed to describing a new algorithm
for solving the word problem in F without going beyond the group alphabet {x0, x1} and
without changing the length of the word being analyzed. We state everything in the form
of a separate assertion. Recall that if a word is equal to 1 in F , then it belongs to the
derived subgroup of the free group (the sum of exponents both in x0 and in x1 is equal to
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zero). This follows from the fact that the defining relations have this property. Therefore
we consider only such words.

Theorem 4.2 ([30]). Let w be a group word over the alphabet {x0, x1} with zero sum of the
exponents of each of the generators. We describe a transformation T of w at every step.

We write the word in a circle representing it in the form of a labelled cyclic graph. We
go around this graph in one of the directions starting from an arbitrary vertex, to which we
assign weight 0. Each consecutive vertex has the same weight as the preceding one if we go
over an edge with label x±1

1 . When we go over an edge with label x0, the weight of the next

vertex increases by 1. When we go over an edge with label x−1
0 , the weight of the next vertex

decreases by 1.
If a word does not contain the letters x±1

1 , then it is equal to 1 in the free group, and

therefore it is equal to 1 in F . Otherwise, we consider edges with label x±1
1 . Their endpoints

have equal weight. We choose those edges with label x±1
1 for which this weight is maximal.

We replace their labels according to the rule x1 7→ x0, x
−1
1 7→ x−1

0 . This yields a word of the
same length, which is denoted by T (w).

If the sums of the exponents of x0 and x1 are zero in the new word, then we iterate the
process by applying the transformation T again. If this is not the case, then w is not equal
to 1 in F . The process terminates after finitely many steps. For a word equal to 1 in F , at
the end we must obtain a word only in x±1

0 .

We can give a simple illustration of how the algorithm in Theorem 4.2 works. Consider
the word w = x−2

0 x1x
2
0x

−1
1 x−1

0 x−1
1 x0x1 (one of the defining relations). It is easy to verify

that the second and fourth occurrences of x−1
1 have the maximum weight. After they are

renamed as x±1
0 , the balance of exponents is preserved. The word T (w) takes the form

x−2
0 x1x

2
0x

−1
0 x−1

0 x−1
1 x0x0 (we can cancel in the free group, but do not have to), and the two

remaining occurrences of x±1
1 acquire the same (and therefore maximum) weight. At the

next step they are renamed as x±1
0 .

One can hope that this algorithm will somehow help to estimate the number of words of
given length that are equal to 1 in F . In particular, it is possible to estimate the number of
words that require a given number of steps of the algorithm. If a successful estimate could
be obtained, using the Kesten – Grigorchuk criterion would solve the amenability problem
either in one way or the other.

4.3. Perspectives. Here we discuss possible ways to work with the amenabilty problem for
F . There can be three different strategies: proving non-amenability; proving amenabilty;
investigation in both directions.

1) One way to establish non-amenability is to find an evacuation scheme on the Cayley
graph of F . This can be done inductively using the exhausting finite fragments desribed in
Section 4.1. Say, this can be a sequence of subgraphs Γn whose vertices are triples of trees.
From Theorem 2.6 we know that there are no pure evacuation schemes for corresponding
generating sets. Since it is easier to work with pure evacuation schemes rather than arbitrary
ones, it is natural to replace the sets of triples by the set of, say, quadruples of trees in order
to get the generating set wider.

2) Another way to establish non-amenability is to find an equation au = bv in the group
ring of F that has only zero solutions. Possible candidates for that were given in Section 3.
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In this case we usually have to know a full description to a set of solutions for some classes
of simpler equations. This looks like Fermat’s proof that the equation X4 + Y 4 = Z2 has
no solutions in positive integers based on the description of Pythagorean triples.

3) One more way is suggested by a paper by Wajnryb and Witowicz (published in the
arXiv several years ago and then withdrawn by the authors). This was quite an original
approach. Let G be a group generated by a finite set A. Consider any cyclic order on the
set A±1. A word of the form xy−1 of length 2 is called regular whenever x is followed by y
in the cyclic order. The authors proved a general property: if G is amenable, then for any
γ ∈ (0, 1) there exists a relation of length n in the group G such that the number of regular
subwords of consecutive letters is at least γn.

The authors tried to prove that this property fails for F for the cyclic order of letters
x0, x

−1
1 , x−1

0 , x1. The proof was incorrect, but the question whether F satisfies the above
property remains open. One can try any order for any generating set of F . If one can show
that any relation of length n in F between the generators contain no more than γ0n regular
subwords for some γ0 < 1, this would imply that F is not amenable.

4) To establish amenability, it suffices to construct a sequence of Folner sets in F .
Roughly speaking, these are finite sets with high density. According to our Theorem 2.7,
we know that the estimate 3.5 for the density is not the best one. This increases the
chances for F to be amenable. So one needs to guess how Folner sets may look like. Some
information can be found in [38]. We also mention our recent paper [34], where we consider
a natural partition of F into 7 subsets according to the structure of normal forms (or
canonical diagrams). We show that all but one of these sets may have non-zero measure
provided finitely additive right invariant probability measure exists on F . Elements of zero-
measured sets can be excluded from any Folner sets. This can help to understand the rule
of constructing the desired sets. Roughly speaking, we need to know what elements of the
group we want to take into the sets and what elements will be out of our sets.

5) One more way to prove amenability is to show that any equation au = bv in the
group ring of F has a non-zero solution. This is equivalent to amenability according to
Theorem 3.2 by Kielak. In this case we may try to solve Problem Pd,m for any parameters;
first steps in this direction were considered in Section 3. Equally, one can consider any
systems of equations in the monoid ring K[M ], where the number of unknowns exceeds
the number of equations. In this case an inductive strategy becomes possible. Say, for any
equation au = bv one can decompose the elements by powers of x0 with coefficients from
K[M1]. This leads to a system of equations in K[M1] with simpler coefficients.

6) A universal approach, when we do not assume the answer (positive or negative)
can be based on Kesten – Grigorchuk criterion. Here we need to estimate the number of
group relations in F of given length between x0 and x1. One tool can be extracted from
Theorem 3.17, where we describe all solutions to the equation (1− x0)u = (1− x1)v in the
group (or monoid) ring. We already mentioned that to any relation between the generators
one can naturally assign such a solution.

From the same point of view, we have to mention Section 4.2, where we give an algorithm
to solve the word problem in F standing inside the set of group words over the alphabet
{x0, x1}. Standard algorithms to solve the word problem based on the normal forms of
elements involve an infinite alphabet {x0, x1, x2, . . .}, where the situation looks more difficult
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to control. Using Theorem 4.2, we have a hope to get a lower or an upper bound for the
number of relations in F of given length.

Notice that even Theorem 4.1 gives some light to the description of relations between
symmetric generators x1, x̄1.

References

[1] S. I. Adian. Random walks on free periodic groups. Math. USSR Izvestiya 21:3 (1983), 425–434 (Russian
original: Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982) no. 6, 1139–1149).

[2] Goulnara N. Arzhantseva, Victor S. Guba, Martin Lustig, and Jean-Philippe Préaux. Testing Cayley
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[9] José Burillo. Introduction to Thompson’s group F (preprint), 2016.

[10] J. W. Cannon, W. J. Floyd and W. R. Parry. Introductory notes on Richard Thompson’s groups.
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