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Abstract. Let S be a pool of s parties and Alice be the dealer. In this paper, we propose
a scheme that allows the dealer to encrypt messages in such a way that only one authorized
coalition of parties (which the dealer chooses depending on the message) can decrypt. At
the setup stage, each of the parties involved in the process receives an individual key from
the dealer. To decrypt information, an authorized coalition of parties must work together
to use their keys. Based on this scheme, we propose a threshold encryption scheme. For
a given message f the dealer can choose any threshold m = m(f). More precisely, any set
of parties of size at least m can evaluate f ; any set of size less than m cannot do this.
Similarly, the distribution of keys among the included parties can be done in such a way
that authorized coalitions of parties will be given the opportunity to put a collective digital
signature on any documents. This primitive can be generalized to the dynamic setting,
where any user can dynamically join the pool S. In this case the new user receives a key
from the dealer. Also any user can leave the pool S. In both cases, already distributed
keys of other users do not change. The main feature of the proposed schemes is that for
a given s the keys are distributed once and can be used multiple times. This property
distinguishes the proposed schemes from the most of such schemes known in the literature.
However, it should be noted that similar schemes have already been proposed (see, for
example, the schemes by M. Bellare, A. Boldyreva, K. Kurosawa, J. Staddon (2007) and
schemes by C. Delerablée and D. Pointcheval (2008)).

The proposed scheme is based on the idea of hidden multipliers in encryption. As a
platform, one can use both multiplicative groups of finite fields and groups of invertible
elements of commutative rings, in particular, multiplicative groups of residue rings. We
propose two versions of this scheme.

Introduction

In the early days of cryptography, most schemes were designed for a single-sender/single-
receiver scenario. Currently, there are scenarios where many recipients (or many senders)
need to share power to use the cryptosystem. The main motivation behind multi-recipient
and threshold cryptography has been to develop methods for working with single-sender/multi-
receiver scripts. For these concepts and related definitions of secrecy, see, for example, [8].
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In multi-sender cryptography, the cryptosystem protects information by encrypting
it and distributing it among multiple parties. Information in the form of a message is
transmitted to the parties in encrypted using the public key and the corresponding private
key is shared between the parties involved. To decrypt information, an authorized coalition
of parties must cooperate to use their keys. With a threshold cryptosystem, in order to
decrypt an encrypted message or sign a message, multiple parties (greater than a certain
threshold number) must cooperate in a decryption or signature protocol. Sharing secrets
was introduced in 1979 by Shamir [30] and Blakely [9]. Since then, many applications
have emerged for several different types of cryptographic protocols. The basics of threshold
cryptography are contained in the fundamental works [10, 12, 14, 16, 17, 18, 20, 31]. See
also survey [2] and papers [1, 7, 11, 13, 19, 21, 22, 23, 24, 25, 26, 28, 29] for some secret
sharing schemes.

For example, a large organisation is carrying out a complex project that involves various
groups of its employees. The organization distributes individual keys among the parties,
allowing various groups of them to receive the necessary information about the project. Each
such group has the right to receive only a certain part of the full information. Moreover,
such a system can provide for the possibility of collective digital signatures on the reports
of various groups of parties. This requires a certain system of access for various groups of
parties to various pieces of information about the project, which can be constructed using
threshold cryptography methods. To achieve this, the keys are distributed in such a way
that each coalition of parties can get a signature from their keys without disclosing any
information about their keys. This example shows that the considered schemes is a natural
primitive.

The main goal of this paper is to build schemes that provide for the reuse of once
distributed secret resources. This is possible only in cases where the allocated private
keys are not revealed when the message f is decrypted on their basis. It should also be
possible to add, remove or replace qualified group members without changing their keys.
These properties show the advantages of the proposed scheme in comparison with the many
known such schemes.

It should be noted that there are schemes with multiple use of the initially distributed
keys. For example, in [13], the authors propose a threshold secret sharing scheme based
on polynomial interpolation and the Diffie-Hellman problem. In this scheme shares can
be used many times for the reconstruction of multiple secrets. This scheme involves the
use of hash functions and has a number of other significant differences from the schemes
proposed in this paper. C. Delerablée and D. Pointcheval [15] proposed a generalization of
threshold public-key encryption to the dynamic setting, where any user can dynamically
join the system, as a possible recipient; the sender can dynamically choose the authorized
set of recipients, for each ciphertext, the sender can dynamically set the threshold m for
decryption capability among the authorized set.

We propose schemes such that the initial distribution of keys between all participants
in the process is carried out either using a secure communication channel, or using the
protocol of secret key transfer over an open communication channel. The entire further
process is carried out over an public network.

We consider s parties. So, we propose new multi-recipient and threshold (m, s)-schemes
that allow qualified parties to receive message f . For a given message f , the dealer can
choose any qualified set of recipients and any threshold m = m(f) without redistributing
keys. One of the two versions of the encryption scheme is monotonic and the other is not.
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The proposed threshold scheme is monotonic, i.e., any set of k ≥ m participants is qualified.
We also offer two versions of the collective digital signature associated with the proposed
versions of multi-receive encryption, respectively.

Notation: Z – set of integer numbers, Zn = Z/nZ – residue ring, N – set of nonnegative
integer numbers, Nk = {1, . . . , k}. For an element g of some group, |g| denotes its order.

1. Construction of fields and residue rings with prescribed orders of
subgroups of multiplicative groups

The main idea behind the corresponding algorithm is the following statement similar to [27],
Fact 4.59 ([3], Theorem 38, Proposition 39).

Proposition 1.1. Let b ≥ 3 be an odd integer, and suppose that b = 1 + rq, where q is an
odd prime and r is an even positive integer.

(1) If there exists an integer a satisfying ab−1 ≡ 1(mod b) and gcd(ar − 1, b) = 1, then for
any prime divisor p of the number b, p ≡ 1(mod 2q), in particular, p ≥ 2q + 1.

(2) If additional the condition r ≤ 4q + 2 is satisfied, then b is prime.
(3) If b is prime, the probability that a randomly selected base a, 1 ≤ a ≤ b − 1, satisfies

ab−1 ≡ 1(mod b) and gcd(ar − 1, b) = 1 is q−1
q .

Proof. Let p be a prime divisor of b. Then condition (1) implies ab−1 ≡ 1(mod p). We also
have ar 6= 1(modp). On the other hand, ap−1 ≡ 1(modp) by Fermat’s Little Theorem.
Then in the group Z∗p we get ar 6= 1, ab−1 = 1, ap−1 = 1. It follows from the inequality

ar 6= 1 together with (ar)q = 1 that |ar| = q. By Lagrange Theorem |a|
...q. Then p − 1

...q.

Since p− 1 is even p− 1
...2q and so p ≡ 1(mod 2q). The statement (1) is proved. Let (2) is

satisfied. Suppose that b is composite. The b is divisible by at least two primes p1 and p2.
By (1) p1, p2 ≥ 2q + 1. Lets do the calculations:

(2q + 1)2 = 4q2 + 4q + 1 ≤ b = 1 + rq ≤ (4q + 2)q = 4q2 + 2q + 1.

This inequality obviously false. The statement (2) is proved. For prime b the first condition
ab−1 ≡ 1(mod b) is true by Fermat’s Little Theorem and the second condition gcd(ar −
1, b) = 1 is satisfied if and only if ar 6= 1(mod b). In the field Fb, the equation xr = 1 has
at most r roots, one of which is equal to 1 and the other is −1. Therefore, on the interval
1 < a < b − 1, there are at most r − 2 numbers r for which ar = 1 in the field Fb. This
means that the probability of choosing such a is no more than r−2

b−3 ∼
r
qr = 1

q . Thus (3) is

proved.

The following algorithm recursively generates an odd prime b, and then chooses random
integers r, q < r, until b = 1+rq can be proven prime using for some base a. By proposition
1.1 the probability of such bases is ∼ 1 − 1/q for prime b. On the other hand, if b is
composite, then most bases a will fail to satisfy the condition ab−1 ≡ 1(modb). Let’s
describe this algorithm.

(1) Select a random odd integer b = 1 + rq, where r is an even number.
(2) We start with an odd prime q = q1.
(3) Let’s choose a number r at random:

q + 1 ≤ r ≤ 4q + 2.
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(4) Consider
b = 1 + rq, q ≤ r ≤ 4q + 2.

(5) Choose randomly the number a = a1 within 1 < a < b − 1 and check the fulfillment
of conditions from proposition 1.1. If a = a1 does not satisfy these conditions, then
we take another random number a = a2. So we repeat a sufficient number of times:
a = a1, a2, . . . , ak until we find a suitable value a.

If you succeed in doing this, then b is prime. We put q = q2 = b and repeat the
construction starting from first step. We do this until we get a big enough prime.

If, with a large number of trials for a, it was not possible to execute the conditions of
proposition 1.1, then we change r and repeat everything again.

Suppose that the constructed number b is indeed prime. Then the probability of finding
the number a with the given properties from proposition 1.1 is ∼ 1

q .

Note also that the so constructed prime b will be greater than q2 because q ≤ r and
b = 1 + rq. The primes q1, q2, . . . obtained as a result of this sequential construction grow
no less than quadratically.

Let’s ask a question: how realistic is it to find a prime number b = 1 + rq under the
indicated constraints q ≤ r ≤ 4q + 2, choosing an even r.

First of all, note that, by the famous Dirichlet theorem, the progression n = 2qt + 1
(t = 0, 1, 2, 3, . . .) contains infinitely many prime numbers. We are interested in primes n of
the indicated form with possible small parameters t = 1, 2, . . .. If the generalized Riemann
hypothesis is true, then the smallest prime number in the indicated sequence does not exceed
c(ε)q2+ε for any ε > 0 (c(ε is a constant, depending on ε). Numerical experiments show
that primes in the specified sequence occur quite often and close to its beginning. Note also
that, according to the theory known numbers to Cramer’s hypothesis pn+1−pn = O(ln2 pn)
(here pn denotes the nth prime number in order). A similar conclusion follows from the
generalized Riemann hypothesis.

Suppose we need to construct a prime p such that p − 1 = r and r is divisible by the
product of s + 1 pairwise coprime numbers d and t =

∏s
i=1 ti, i.e., r = dtr′. This can be

effectively done by the process just described, by choosing the parameter r that is divisible
by dt and r′ that is divisible by q. Then we obtain the prime number p = 1+r and build the
finite field Fp of order p. We can assume that d = t− 1 which is coprime with any number
ti. The order p− 1 of the multiplicative group F∗p is divisible by r.

Therefore F∗p contains s cyclic subroups Ti = gp(ui), where |ui| = ti, i = 1, . . . , s, and
a subgroup F = gp(f0) of order d. Let g generates F∗p. The elements ui are efficiently

computable by the formula uj = g
r
tj . The element f is computed as f0 = g

r
d .

Of course, there is another way to find the prime number p for which p−1 is divisible by
the product dt, as above. We select the even numbers r′ in a certain interval and check the
simplicity of the number p = 1 +drr′ using well-known tests, for example, the Miller-Rabin
test (see [27]). The check goes on until a simple p is obtained. This method is effective and
often used in practical cryptography.

The indicated method of constructing the subgroups Ti, i = 1, . . . , s and F , as above, is
obviously extended to residue rings, in particular, to rings of the form Zn, n = pq, where p
and q are different primes. In this case, we can construct the primes p and q with the desired
sets of divisors for the numbers p−1 and q−1, and then use them in our construction. More
precisely, suppose we want to construct a ring Zn such that the multiplicative group Z∗n of
order ϕ(n) = (p − 1)(q − 1) has subgroups W1, . . . ,Wk of orders r1 = t1s1, . . . , rk = tksk,
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respectively, where any pair (ti, si) consists of two coprime numbers. Then we choose a

prime number p such that p− 1 is divisible by t =
∏k

i=1 ti, and q such that q− 1 is divisible

by s =
∏k

i=1 si. For each i = 1, . . . , k let the element ui ∈ Zp is of order ti, and similarly
vi ∈ Zq is of order si. By the Chinese Remainder Theorem, from the system of equations{

wi ≡ ui(mod p),

wi ≡ vi(mod q).

we find wi. Obviously, wi is of order ri and we can define Wi = gp(wi) for i = 1, . . . , k.
Using residue rings instead of fields as platforms for encryption can have its benefits.

The schemes proposed in this paper are based on the difficult solvability of calculating the
order of an element of a multiplicative group of a field or a residue ring, respectively. In
the field Fq, q = pr, with a known primary decomposition of the number q − 1 (the order
of the multiplicative group F∗q), there exists a polynomial algorithm for calculating the
order of an arbitrary element g ∈ F∗q . See [27], algorithm 4.79, page 162. The specified
primary decomposition makes the proposed schemes vulnerable to the case of a finite field.
In particular, schemes are vulnerable when quantum computers are used to generate such
decompositions. In cryptography, when using residue rings as platforms, it is assumed that
the order of the ring’s multiplicative group is unknown. However, quantum computing in
this case also makes the circuit vulnerable.

2. General organization

In this section, we give a formal organization of the process. Consider a dealer Alice and
an initial pool of s participants A1, . . . , As. At each step, this pool can change. For brevity
we keep denotion s in future descriptions. Alice estimates the possible number snew of new
participants in the process. Let smax = s + snew. Then Alice chooses a platform: a finite
field or a residue ring of sufficiently large size, in which smax + 1 subgroups C1, . . . , Csmax

and F of sufficiently large pairwise coprime orders can be distinguished. The corresponding
process is described in the previous section. Possible decryption keys are the orders of the
first smax subgroups C1, . . . , Csmax . The last subgroup F will serve as the message space,
i.e., each message will be encoded by its element. The corresponding process should be
described in a special way. For finite fields and residue rings such processes are well known.

Next, Alice randomly selects a subset of s subgroups among C1, . . . , Csmax and dis-
tributes their orders (keys) among the participants. The participant Ai thus receives the
private key ti. In the future, new participants may appear who, upon registration, receive
their private keys, chosen by Alice from the previously unused orders of cyclic subgroups
C1, . . . , Csmax . The keys of the retired participants are not used in the future. Therefore,
this probabilistic distribution scheme allows Alice to generate and distribute individual keys
among the parties.

Individual keys ti are transmitted by Alice in encrypted form, regardless of the model
used. For such transmission, Alice opens the encryption system. The system can be either
symmetric or public key. All participants in the process must have complete necessary
information about the encryption system. Various protocols can be used to transfer keys ti,
for example, the Diffie-Hellman protocol.
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After this stage, the parties and dealer can communicate following one of the next two
Communication models. In the first model (private channel model), the parties communi-
cate through a complete synchronous network of secure and reliable point-to-point channels.
Any set of parties has access to the messages sent to the parties in the set. In the second
model (broadcast channel model), the parties communicate through a public channel. A set
of parties can obtain all the messages circulating between the parties. Alice publishes the
encrypted messages f in the network she uses. A more secure method using a trusted server
is as follows. Let the scheme is not monotonic. The server opens a separate room where it
invites every participant from the authorized set. Each of them receives a password to enter
and the ability to operate with the received message. On entry, participant Ai modifies the
message using its key ti. A member outside of that coalition cannot do so. Participants
can log in with nicknames to hide who owns the key if it is somehow calculated by other
participants. It is possible that the present participants are visible only to a trusted server.
Note that in the versions of the protocol proposed below, the key is calculated as a discrete
logarithm.

More secret is the scheme in which members of the coalition pass their keys to a trusted
server upon entry. The server performs the corresponding operations without declaring
intermediate results. Only the final result is announced. With such an organization, the
coalition members do not have data to calculate the keys of other coalition members. They
may only attempt to compute the shared key of the coalition. Therefore, it must ensure
the security of the protocol. If the coalition is small, the dealer can use the keys of virtual
participants prepared in advance by him, formally including them in the coalition. It is
assumed that they are known to the server, which will perform their operations on its own.

In case the scheme is monotonous or threshold, the trusted server first gathers a plurality
of participants in a separate location, also using one-time passwords. It then checks to see if
the set of participants gathered is capable of deciphering the message. After that, it allows
them to carry out their operations or carries out these operations, as described above,
announcing only the final result.

A coalition signature is carried out in a similar way.

3. Multi-recipient encryption protocol

The main idea used to construct a new multi-recipient protocol is the encryption scheme
proposed in the works of the author [4] and [5]. Suppose Alice installs the following cryp-
tographic system, whose platform K is either the multiplicative group F∗p of a finite field
Fp, where p is a prime number, or the multiplicative group Z∗n of a residue ring Zn, n = pq,
where p and q are distinct primes. In the field case, the parameter p is public. In the
residue ring case, the parameters p, q are private, and n is public. We denote by K the
multiplicative group F∗p or Z∗n respectively.

The scheme works as follows.
Alice chooses two subgroups F and H of K of coprime exponents: exp(F ) = k and

exp(H) = l, by the method described in the previous section. Recall that, the exponent of
a group is defined as the least common multiple of the orders of all elements of the group.
The subgroup F serves as the message space, and H is the space of hidden multipliers.
Both of these subgroups F and H are publicly available. Then k and l are Alice’s private
numbers. She also computes a private number l′ such that ll′ = 1(mod k). It follows, that
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f ll′ = f for any element f ∈ F. Suppose Bob wants to send a message to Alice. Alice will
receive and decrypt this message. The algorithm works as follows:

(1) Bob encodes the message as f ∈ F , chooses h ∈ H at random and sends c = hf to
Alice.

(2) Alice computes

cll
′

= (hl)l
′
f ll′ = f.

Secrecy. The secrecy of the proposed scheme is based on the intractability of calculat-
ing the order of an element in a finite field or in a residue ring of the considered type. Note
that the ability to calculate the orders of elements in the residue ring Zn makes it possible
to reveal transmitted messages without knowing the decryption key. Consider, for example,
the RSA system with standard notation for its elements (Zn, e, and so on). Indeed, the
order of the encrypted message c = me in the multiplicative group Z∗n is equal to the order
of the original message m, since the degree e (the encryption key) is relatively prime to the
order of the multiplicative group Z∗n. Let’s say the attacker calculated this order of t. Then
he can find a one-time decryption key dm from the equality edm = 1(mod t) and calculate
cdm = m(mod n). This scheme has a number of advantages over the standard RSA. First,
the encryption uses an easier-to-perform multiplication operation, rather than exponentia-
tion. Secondly, different keys are used, which provides different types of ciphertexts for the
same message. This gives the semantic secrecy property.

Remark 3.1. Of course, one can use as a platform the multiplicative group K∗ of any com-
mutative associative ring K with unity, provided that large subgroups of coprime exponents
can be chosen in K, and the problem of calculating the order of an element is intractable.
One of the advantages of this system over the original RSA version is its semantic secrecy.
See [4], [5] or [6] for details. Using residue rings instead of fields as platforms for encryp-
tion can have its benefits. The just described scheme is based on the difficult solvability
of calculating the order of an element of a multiplicative group of a field or a residue ring,
respectively. In the field Fq, q = pr, with a known primary decomposition of the number
q − 1 (the order of the multiplicative group F∗q), there exists a polynomial algorithm for
calculating the order of an arbitrary element g ∈ F∗q . See [27], algorithm 4.79, page 162.

Let S be the system which is organized and managed by Alice. Let {A1, . . . , As} is the
set of users in S at the considered step.

Version 1

When setting up the system S, Alice takes a set of pairwise coprime positive integers
t1, . . . , tsmax .

Let t =
∏s

i=1 ti. Alice also defines d = t − 1 or d = t + 1. Then Alice chooses as a
platform the group K of large order r where r = dtr′, for some r′ ∈ N, while simultaneously
defining the set of subgroups Ci = gp(ui) (i = 1, . . . , s) and F of K of the orders t1, . . . , ts
and d, respectively. This group can be chosen as a subgroup of the multiplicative group of
a finite field or residue ring according to the process described in Section ??. The group
K is public. The subgroups C1, . . . , Cs, F and their corresponding orders t1, . . . , ts, d are
private. Let H =

∏s
i=1Ci. The subgroup F serves as the space of possible messages f , and

H is the space of hidden multipliers.
Then Alice distributes the numbers (keys) ti among the current users A1, . . . , As of

S. For simplicity me assume that these keys are distributed at such a way, that each
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participant Ai gets ti for i = 1, . . . , s. These keys are for future reuse. The remaining
unused keys are stored for distribution to new users of the system, if any appear in the
future. This distribution is carried out either over a secure communication channel, or is
transmitted in encrypted form over an open channel. These keys are for future reuse.

Let f, f ∈ F be a message that Alice wants to send to some (qualified) set of users of
the system S(f) = {Ai1 , . . . , Aiw |1 ≤ i1 < . . . < iw ≤ s}. Alice acts as follows:

(1) Alice randomly selects nontrivial elements vij ∈ Cij , j = 1, . . . , w. Then she computes

c =
∏w

j=1 vij · f
t/

∏w
j=1 tij . She sends c to the coalition S(f).

(2) Members of the coalition S(f) sequentially raise the obtained element c to the power
tj for j = 1, . . . , w. In the case d = t− 1, they get element

f t = fd+1 = f.

If d = t + 1, they get
f t = fd−1 = f−1

and compute f.

Obviously, Alice can send the message f to any possible coalition of users in this way.
Any unqualified coalition will not be able to reveal the message f in some natural way. If
this coalition does not contain the user Aij it cannot remove the factor vij .

This scheme is not monotonous. Moreover, interference with the disclosure of a secret
by any member outside the qualified coalition results in an incorrect secret.

Version 2.

This version can be used to decrease d.
When setting up the system S, Alice takes a set of pairwise coprime positive integers

t1, . . . , tsmax and d such that ti = 1(modd) for all i. Such a set of numbers ti exists for any d
by the famous Dirichlet theorem, according to which there are infinitely many such primes
ti.

Now Alice takes as above the multiplicative group K of a finite field or residue ring of
order r = dtmaxr

′, tmax =
∏nmax

i=1 ti, while simultaneously defining the set of subgroups Ci =
gp(ui) (i = 1, . . . , smax) and F of the group K of orders t1, . . . , tsmax and d, respectively.
The corresponding algorithm has been given in Section ??. The group K is public. The
subgroups C1, . . . , Csmax , F and their corresponding orders t1, . . . , tsmax , d are private. Let
H =

∏smax
i=1 Ci. The subgroup F serves as the space of messages f , and H is the space of

hidden multipliers.
For simplicity we assume that the numbers ti are distributed as keys among the current

users of S at such a way, that each participant Ai gets ti for i = 1, . . . , s. Let’s denote
t =

∏s
i=1 ti. These keys are for future reuse. The remaining unused keys are stored for

distribution to new users of the system, if any appear in the future. This distribution is
carried out either over a secure communication channel, or is transmitted in encrypted form
over an open channel.

Let f ∈ F be a message that Alice wants to send to some (qualified) set of users of the
system S(f) = {Ai1 , . . . , Aiw |1 ≤ i1 < . . . < iw ≤ s}. Alice acts as follows:

(1) Alice randomly selects nontrivial elements vij ∈ Cij , j = 1, . . . , w. Then she computes
c =

∏w
j=1 vij · f . She sends c to the coalition S(f).

(2) Members of the coalition S(f) sequentially raise the element c and elements successively
received from it to the power tj for j = 1, . . . , w.
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The first step gives the element

ci1 = v
ti1
i2
· · · vti1iw

· f.
This means that the first factor has been removed from the record. The rest of the fac-
tors before f retained their orders, since these orders are coprime to ti1 . Continuing the
process, they sequentially remove all factors except f , which remains unchanged for all
exponentiations. As a result, they get the element f .

Unlike version 1, this version is monotonous. Any coalition containing a qualified
coalition also reveals the secret. This is due to the fact that each raising to the power does
not change the factor f .

Coalition signature.
The following descriptions use the above notations. As usual, the process of setting

up and verifying a signature is in a certain sense the opposite of the process of setting
up and recovering a message by coalition. In this case, there is a dealer, say, Alice, who
organizes the process, a set of parties A1, . . . , As, and a set of possible verifiers, which for
simplicity we consider to be singleton D. As before, Alice creates an auxiliary cryptographic
system. Using this system, Alice distributes among the parties not the numbers t1, . . . , ts,
as described in the above schemes, but the generating elements u1, . . . , us of subgroups
C1, . . . , Cs relatively. Any element f of the subgroup F defined as in the schemes 1 and 2
can be considered as a document to sign by an authorized coalition {Ai1 , . . . , Aik}.

Let f ∈ F be a signature document for some coalition {Ai1 , . . . , Aik}. The signing
procedure consists in the fact that each Aij first selects an element aij from the subgroup
gp(uij ) distributed to him. Then they successively multiply f by the selected elements,
resulting in a signed document fsign = ai1 . . . aik · f .

Alice also gives the numbers t1, . . . , ts to the verifier D. To check the correctness of
the signature of the given coalition on the document f , D calculates t = ti1 . . . tik and then
raises fsign to the power t. In both schemes 1 and 2, with the correct statement of the
signature, it should turn out to be f . The efficiency and security of this algorithm are
similar to the corresponding qualities of the above schemes.

It should be noted that if scheme 2 is used in this way, the verifier can verify the
correctness of the signature of any sub-coalition. If this is not acceptable, appropriate
additional steps should be taken.

4. (m,n)-threshold encryption scheme

This proposition bases on the version 2 of the multi-recipient encryption protocol described
in Section 4. Let us prove a preliminary statement.

Lemma 4.1. Let s ∈ N. For any k ∈ Ns, there exists a set T (k) = {t1, . . . , tlk}, which can
be represented as a union of subsets Tj(k), j = 1, . . . , s, such that the union of any k subsets
coincides with T (k), and the union of a smaller number is strictly less than T (k).

Proof. Induction by k. The statement is true for k = 1, when one can define l1 = 1
and T1(j) = {t1} for any j. Assume that the statement is true for k − 1 and T (k − 1) =
{t1, . . . , tlk−1

}. We enumerate all pairs of subsets Tj(k−1), j = 1, . . . , s with distinct numbers
as V1, . . . , V( s

k−1)
. Then we take elements tlk−1+1, . . . , tlk−1+( s

k−1)
and include each tlk−1+i
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into all Tj(k−1) except for those contained in Vi. Therefore we can set T (k) = {t1, . . . , tlk},
where lk = 1 +

(
s
1

)
+ . . . +

(
s

k−1
)
, satisfying the required condition.

Note that for the indicated construction T (1) ⊂ T (2) ⊂ . . . ⊂ T (s) and |T (n)| = 2s−1.
Moreover, for any j, the inclusions Tj(1) ⊂ Tj(2) ⊂ . . . ⊂ Tj(s) are satisfied.

Let S be the system which is organized and managed by Alice. Let {A1, . . . , As} be
the set of users in S.

For b = 2s− 1, Alice takes a set of pairwise coprime positive integers T = {t1, . . . , tb}∪
{d}. Let t =

∏r
i=1 ti. Then Alice (following section 2) chooses a large simple finite field

Fp, p − 1 = r,, where r = dtr′, for some r′ ∈ N, simultaneously defining subgroups Wi =
gp(wi) (i = 1, . . . , b) and F of the multiplicative group F∗p of orders t1, . . . , tb and d respec-
tively.

By Lemma 4.1, Alice defines a representation of the set T in the form of a union of
subsets T (k) for k = 1, . . . , b. For each j ∈ Nn, Alice computes t̄j =

∏
i∈T (j) ti. Then she

computes the keys t̃j = t̄j t̄
−
j , where t̄−j = t̄−1j (mod d).

Then Alice distributes the keys t̃j among the participants according to the indices. Each
participant Sj receives the key t̃j .

We suppose that Alice wants to develop a (m, b) threshold encryption scheme. In each
subgroup Wi, where i ≤ lm, Alice chooses a nontrivial element gi. Then she computes

c =
∏

i∈T (m)

gi · f

and sends this element to all participants.
Let C be a coalition, consisting of z ≥ m members. Coalition members consistently

raise c to exponents equal to their keys. Since the product of all their keys is divisible by
any value ti for i ≤ lk, the result is the message f . This does not happen if the coalition
has fewer than k members. Hence, it is a (k, b) secret sharing scheme.

Properties and security

The semantic secrecy of the above schemes is based on the difficult solvability of the
problem of calculating the exponent of an element in the platform under consideration
(finite field or commutative associative ring with unity, in particular, residue ring). Indeed,
let there be two secrets m1 and m2, one of which is transmitted in the form c = tm, where
t and m have coprime orders. If the attacker can calculate the exponents of the elements,
he will calculate ei =exp(mi) and e′i = exp(c−1mi) for i = 1, 2. Then he compares the
sets of prime divisors for two pairs e1, e

′
1 and e2, e

′
2. Only in the pair corresponding to the

transmitted secret, such a set for e′i does not contain prime divisors of ei.
If the problem of calculating the exponent of a protocol platform element is intractable,

then this scheme is semantically secret.
In the case of the field Fp, to calculate the orders of the elements of the group F∗p, it is

sufficient to know the primary decomposition of the number p− 1 (see [27]). The ability to
solve the problem of calculating the order of an element of the group Z∗n, n = pq (p, q are
different primes) gives an algorithm for calculating transmitted messages, that is, it solves
the RSA problem (see [4]).

There is very little public data in the proposed schemes. In the case of the field Fp,
only its order p is known, but the primary decomposition of the number p− 1 is unknown.
In the case of the residue ring Zn, only the module n is known.
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5. Conclusions

In this paper, we have studied two versions of a new scheme of multi-recipient encryption and
threshold encryption based on hidden multipliers in finite fields or commutative associative
rings, in particular, residue rings. We also propose a (m,n) - threshold scheme, where
m is chosen by the dealer for each session without any additional allocations. The main
feature of the proposed schemes is that the keys are distributed once among users and can
be used multiple times. Our schemes are secure against passive attacks and semantically
secure under assumption that the problem of calculation the exponent of element of a
protocol platform is intractable. It is also easy to see that the version 2 of the scheme is
monotonic, but the version 1 is not. We also offer two versions of the collective digital
signature associated with the proposed versions of multi-receive encryption, respectively.
All proposed schemes allow you to dynamically add and remove users of the main pool.
Previously distributed keys are not changed.
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