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Abstract. We give an algorithm that decides whether a single equation in a group that
is virtually a class 2 nilpotent group with a virtually cyclic commutator subgroup, such as
the Heisenberg group, admits a solution. This generalises the work of Duchin, Liang and
Shapiro to finite extensions.

1. Introduction

Since the 1960s, many papers have discussed algorithms to decide whether or not equations
in a variety of different classes of groups admit solutions. An equation with the variable set
V in a group G has the form, w = 1, for some element w ∈ G∗F (V ). A first major positive
result in this area is due to Makanin, during the 1980s, when in a series of papers he proved
that it is decidable whether a finite system of equations in a free group admits a solution
[9–11]. Since then, Makanin’s work has been extended to show the decidability of the
satisfiability equations in hyperbolic groups, solvable Baumslag-Solitar groups, right-angled
Artin groups and more [2, 4, 7].

Our primary focus in this paper will be single equations in virtually finitely generated
class 2 nilpotent groups, where if P is a property of groups, we say a group is virtually P
if it has a finite-index subgroup with P. The single equation problem in a group G is the
decision question as to whether there is an algorithm for G that takes as input an equation
w = 1 in G and outputs whether or not w = 1 admits a solution. Duchin, Liang and Shapiro
proved that the single equation problem in finitely generated class 2 nilpotent groups with a
virtually cyclic commutator subgroup is decidable [5]. This is in contrast with the fact that
the satisfiability of systems of equations in free nilpotent groups of class 2 is undecidable.
The assumption that the commutator subgroup is virtually cyclic cannot be completely
removed; Roman’kov gave an example of a finitely generated class 2 nilpotent group where
it is undecidable whether equations of the form [X1, X2] = g, where g is a constant, admit
solutions [15].

Our main result is to generalise Duchin, Liang and Shapiro’s result to show that the
single equation problem in virtually a finitely generated class 2 nilpotent group with a
virtually cyclic commutator subgroup is decidable. This class includes the Heisenberg group
and all higher Heisenberg groups.
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Theorem 1.1. The single equation problem in virtually a group that is class 2 nilpotent
group with a virtually cyclic commutator subgroup is decidable.

Roman’kov began the study of equations in nilpotent groups, when in 1977 he showed
that in free nilpotent groups of class at least 9 and sufficiently large rank, it is undecidable
whether finite systems of equations admit a solution [14]. Following this, Repin proved that
there is a finitely presented nilpotent group such that the satisfiability of single equations
with one variable are undecidable [12], and improved this by showing that there are such
groups of nilpotency class 3 [13]. These results constrast with the fact that the conjugacy
problem, which is a specific example of a one-variable equation, is decidable in all finitely
generated nilpotent groups. Repin also showed that the satisfiability of single equations
with one variable in non-abelian free nilpotent groups of class at least 1020 is undecidable
[13].

In the positive direction, Repin proved that the satisfiability of single equations with
one variable are decidable in any finitely generated class 2 nilpotent group [13]. In addition,
Truss showed that the satisfiability of single equations in two variables in the free nilpotent
group of class 2 and rank 2 (the Heisenberg group) are decidable [17].

We prove our main result using a similar method to the method used by Duchin, Liang
and Shapiro [5]; by converting an equation in a virtually class 2 nilpotent group with a
virtually cyclic commutator into an equivalent system of linear and quadratic equations
and congruences in the ring of integers. We then show that the system obtained is of the
same type as that obtained from an equation in a class 2 nilpotent group with a virtually
cyclic commutator subgroup, and is thus decidable using the work of Duchin, Liang and
Shapiro.

In Section 2, we define a group equation and solution, and give some background on
nilpotent groups. In Section 3, we use the arguments of Duchin, Liang and Shapiro [5]
to detail the reduction from a single equation in a class 2 nilpotent group to a system of
equations in the ring of integers. We conclude in Section 4 by using this reduction to prove
Theorem 1.1.

2. Preliminaries

Notation 2.1. We introduce notation we will frequently use.

(1) If S is a subset of a group, we define S± = S ∪ S−1. Moreover, if a ∈ S and w is a
word over S± we define expsumaw to be the number of occurences of a in w minus the
number of occurences of a−1 in w;

(2) For elements g and h of a group G, the commutator is defined by [g, h] = g−1h−1gh;
(3) If x ∈ R, we will define the floor notation bxc in a non-standard way:

bxc =

{
max{y ∈ Z | y ≤ x} x ≥ 0
min{y ∈ Z | y ≥ x} x < 0.

That is, we round towards zero.
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Group equations. We start with the definition and some examples of equations in groups.

Definition 2.2. Let G be a finitely generated group, V be a finite set disjoint with G, and
F (V ) be the free group on V . An equation in G is an identity w = 1, where w ∈ G∗F (V ). A
solution to w = 1 is a homomorphism φ : G ∗F (V )→ G that fixes elements of G, such that
φ(w) = 1. The elements of V are called the variables of the equation. A system of equations
in G is a finite set of equations in G, and a solution to a system is a homomorphism that
is a solution to every equation in the system.

We say two systems of equations in G are equivalent if they have the same set of
solutions.

The single equation problem in G is the decidability question as to whether there is an
algorithm that accepts as input an equation w = 1 in G, where the elements of G within
w = 1 are represented by words over a finite generating set, and returns yes if w = 1 admits
a solution and no otherwise.

Remark 2.3. We will often write a solution to an equation in a group G as a tuple of
elements (g1, . . . , gn), rather than a homomorphism. We can recover such a homomorphism
φ from a tuple by setting φ(g) = g for each g ∈ G and φ(Xi) = gi for each Xi, and the
action of φ on the remaining elements is now determined as it is a homomorphism.

Example 2.4. Deciding whether an equation in the group Z admits a solution reduces to
solving a linear equation in integers. For example, using the free generator a for Z,

X2a3Y 2a−3Y −1a = 1

is an equation, which we can rewrite using additive notation as

2X + 3 + 2Y − 3− Y + 1 = 0.

We can use the fact that Z is abelian to show that this is equivalent to 2X + Y + 1 = 0,
which is just a linear equation in integers, and elementary linear algebra can be used to
decide if it admits a solution (and ‘construct’ the set of solutions). In this case, the equation
does admit solutions, and the set of solutions is

{(x, −2x− 1) | x ∈ Z}.

Nilpotent groups. Below we give the definition of a nilpotent group, along with an ele-
mentary lemma about commutators we will use later on.

Definition 2.5. Let G be a group. Define γi(G) for all i ∈ Z≥0 inductively as follows.

γ0(G) = G

γi(G) = [G, γi−1(G)] for i ≥ 1.

The subnormal series (γi(G)) is called the lower central series of G. We call G nilpotent of
class c if γc(G) is trivial.

Lemma 2.6 ([8], Lemma 2.3). Let G be a class 2 nilpotent group, and g, h ∈ G. Then

1. [g−1, h−1] = [g, h],
2. [g−1, h] = [g, h]−1.

We now introduce the normal form we will be using for class 2 nilpotent groups. This
is used in [5], and we include the proof of uniqueness and existence for completeness.

The following lemma is used to define the Mal’cev generating set and normal form.
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Lemma 2.7. Let G be a class 2 nilpotent group with a virtually cyclic commutator subgroup.
Then G has a generating set

{a1, . . . , an, b1, . . . , br, c, d1, . . . , dt},
where n, r, t ∈ Z>0, such that the dis have finite order, c and the dis are central, for each

bi, there exists li ∈ Z>0, such that blii ∈ [G, G], and [G, G] = 〈c, d1, . . . , dt〉.
Moreover, every element of G can be expressed uniquely as an element of the set

{ai11 · · · a
in
n b

j1
1 · · · b

jr
r c

pdq11 · · · d
qt
t | i1, . . . , in, p ∈ Z, (2.1)

jx ∈ {0, . . . , lx − 1}, qx ∈ {0, . . . , kx − 1} for each x}.

Proof. Using the fundamental theorem for finitely generated abelian groups and the fact that

[G, G] is virtually cyclic, the short exact sequence {1} → [G, G]→ G→ G�[G, G]→ {1}
becomes

{1} −→ Z⊕ (Zk1 ⊕ · · · ⊕ Zkt) −→ G −→ Zn ⊕ (Zl1 ⊕ · · · ⊕ Zlr) −→ {1},
where n ∈ Z>0 and r, t ∈ Z≥0. Let a1, . . . , an be lifts in G of standard generators for
Zn, b1, . . . , br be lifts of generators of Zl1 , . . . , Zlr , respectively. Let c be a generator for
Z, and d1, . . . , dt be generators of Zk1 , . . . , Zkt , respectively. Then using our short exact
sequence, it follows that {a1, . . . , an, b1, . . . , br, c, d1, . . . , dt} generates G. We have

that dkii = 1, for all i. As {c, d1, . . . , dt} generates [G, G], the and we have shown that
the generating set exists.

We now turn our attention to the normal form, showing existence and uniqueness.
Existence: Let g ∈ G, and w be a word over our generating set that represents g. As c

and all dis are central, we can push them to the back of w, and into the desired order. As
[ai, aj ], [bi, bj ], and [ai, bj ] can be written as expressions using c the and dis, we have that
reordering the ais and bis to the desired form simply creates expressions using cs and the dis,
which can then be pushed to the back of w, and into the stated order. Let i ∈ {1, . . . , r}.
By definition, [G, G]blii = [G, G], so we can reduce bi modulo li by creating an expression
over c and the dis, which, again, can be pushed to the back and into the desired form. Since
the dis have finite order, we can reduce their exponents modulo these orders.

Uniqueness: Let i1, . . . , in+r+1+t ∈ Z and j1, . . . , jn+r+1+t ∈ Z be such that

u = ai11 · · · a
in
n b

in+1

1 · · · bin+rr cin+r+1d
in+r+1+1

1 · · · din+r+1+t

t

and
v = aj11 · · · a

jn
n b

jn+1

1 · · · bjn+rr cjn+r+1d
jn+r+1+1

1 · · · djn+r+1+t

t

and expressions in the normal form stated in the lemma. Suppose u =G v. Then u and v

have the same image in the quotient of G by [G, G], and so ai11 · · · ainn b
in+1

1 · · · bin+rr =G/[G, G]

aj11 · · · a
jn
n b

jn+1

1 · · · bjn+rr . As these words are in the standard normal form for these finitely
generated abelian groups, it follows that ix = jx for all x ∈ {1, . . . , n+ r}. Thus

cin+r+1d
in+r+1+1

1 · · · din+r+1+t

t =G c
jn+r+1d

jn+r+1+1

1 · · · djn+r+1+t

t .

As [G, G] is abelian and these words are in the standard normal form for [G, G], it follows
that all of the exponents in these expressions must be equal; that is ix = jx for all x ∈
{n + r + 1, . . . , n + r + 1 + t}. We have now shown that u and v are equal as words, as
required.
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Definition 2.8. A generating set defined as in Lemma 2.7 is called a Mal’cev generating
set, and the normal form defined in Lemma 2.7 is called the Mal’cev normal form.

As we have seen in the proofs of the previous lemma, one can manipulate words in class
2 nilpotent groups with a virtually cyclic commutator subgroup by pushing ais past bis and
paying a ‘cost’ in c and the dis. Quantifying the ‘cost’ for each such move will be necessary
to convert a given equation in a class 2 nilpotent group into a system of equations in the
ring of integers, with the ‘cost’ appearing as constants in this system.

Notation 2.9. We define a number of values for a group G with the Mal’cev generating
set

{a1, . . . , an, b1, . . . , br, c, d1, . . . , dt},
where again, li is minimal (and exists) such that blii ∈ [G, G] and the order of di is ki.

(1) From Lemma 2.7, we have that [ai, aj ], [bi, bj ], [ai, bj ] ∈ {cpdq11 · · · d
qt
t | p, q1, . . . , qt ∈

Z}, for all i, j, with i < j in the first two expressions. For all such i and j, k ∈
{1, . . . , s}, and l ∈ {1, . . . , t}, we can therefore define αijl, βijl and γijl to be the
unique integers satisfying the following normal form expressions in [G, G]:

[aj , ai] = cαij0d
αij1
1 · · · dαijtt , (i < j)

[bj , bi] = cβij0d
βij1
1 · · · dβijtt , (i < j)

[ai, bj ] = cγij0d
γij1
1 · · · dγijtt .

(2) Since blii ∈ [G, G], we can define ηil for all i ∈ {1, . . . , r}, and l ∈ {0, . . . , t}, to be
the unique integers such that

blii = cηi0dηi11 · · · d
ηit
t .

3. Transforming equations in nilpotent groups into equations in integers

This section aims to prove Lemma 3.6; that is, a single equation E in a class 2 nilpotent
group with a virtually cyclic commutator subgroup is equivalent to a system SE over Z
of (1) linear equations and congruences, (2) a single quadratic equation and (3) quadratic
congruences, where the quadratic equations and congruences can also contain ‘floor’ terms.

The idea of the proof is to replace each variable in E with a word representing a potential
solution, and then convert this new word into Mal’cev normal form. The linear equations
in SE occur as the solution to the exponent of each generator ai being set to 0, and the
linear congruences, quadratic equation and quadratic congruences occur when the same is
done for the bis, c and the dis, respectively.

We begin with an example of this process.

Example 3.1. Let G be the class 2 nilpotent group with the presentation

〈a1, a2, b, c, d | c = [a1, a2], d = [a1, b] = [a2, b], b
2 = c, d2 = 1,

[a1, c] = [a1, d] = [a2, c] = [a2, d] = [b, c] = [b, d] = 1〉.
Consider the equation

Xba1cXa2c
−3a1X = 1 (3.1)
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We first transform the constants in this equation into Mal’cev normal form, push all the
commutators to the right, and then use the relation d2 = 1 to obtain

Xa1bXa1a2Xc
−3d = 1. (3.2)

We set X = aX1
1 aX2

2 bX3cX4dX5 using our Mal’cev normal form, for new variables X1, . . . , X5

over Z. Plugging this into (3.2) gives

aX1
1 aX2

2 bX3cX4dX5a1ba
X1
1 aX2

2 bX3cX4dX5a1a2a
X1
1 aX2

2 bX3cX4dX5c−3d = 1. (3.3)

We can the transform this into Mal’cev normal form, to (first) obtain

a3X1+2
1 a3X2+1

2 b3X3+1c3X4+X1(1+X2+X2)+X1X2−3 (3.4)

d3X5+X2(X3+1+X3)+X1(X3+1+X3)+(X3+1+X3)+(X3+1+X3)+X2(1+X3)+X1(1+X3)+X3+2+1 = 1.

Simplifying this gives

a3X1+2
1 a3X2+1

2 b3X3+1c3X1X2+X1+3X4−3d3X1X3+3X2X3+4X1+4X2+5X3+3X5+5 = 1. (3.5)

Using the relations b2 = c and d2 = 1, we can conclude

a3X1+2
1 a3X2+1

2 b(X3+1)mod 2c
3X1X2+X1+3X4−3+

⌊
X3+1

2

⌋
+X3d(X1X3+X2X3+X3+X5+1)mod 2 = 1.

(3.6)

This results in the following system of equations over (the ring) Z
3X1 + 2 = 0 (3.7)

3X2 + 1 = 0

X3 + 1 ≡ 0 mod 2

3X1X2 +X1 +X3 +

⌊
X3 + 1

2

⌋
+ 3X4 − 3 = 0

X1X3 +X2X3 +X3 +X5 + 1 ≡ 0 mod 2.

As 3X1 + 2 = 0 admits no integer solutions, we can conclude that our equation (3.1) does
not admit a solution.

Notation 3.2. Let G be a class 2 nilpotent group, X1, . . . , XM be variables, where
M ∈ Z>0. Let N ∈ Z>0, ε1, . . . εN ∈ {−1, 1}, and

ω1X
ε1
p1 · · ·ωNX

εN
pN

= 1 (3.8)

be an equation over G, where ω1, . . . , ωN are words in Mal’cev normal form, over a Mal’cev
generating set for G, as constructed in Lemma 2.7 and p1, . . . , pM ∈ {1, . . . , M}. We will
also use the notation introduced in Lemma 2.7 for the generators. We will use ν1, . . . , νN
to be a potential solution. We define a number of values based on the ωzs and νzs. To
make it clearer, the potential solution is shown in bold.

For each Mal’cev generator a, we will define νz,a and ωz,a by:

νz,a = expsuma(νz), ωz,a = expsuma(ωz).

By convention we will often use d0 = c and take ≡k0 to be equality (since c is infinite
order and k0 is being used to represent the order of d0 = c, this equality modulo k0 is true
equality).
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This lemma transforms the equation that we obtained from (3.8) to obtain a system
of linear and quadratic equations and congruences over the integers. We do this by first
transforming the equation with the potential solution subbed in into Mal’cev normal form.
This corresponds to moving from (3.4) to (3.6) in Example 3.1. Following that, we equate
all of the exponents in this word to zero, given our system, which is done to obtain (3.7) in
Example 3.1, respectively. The capital Latin alphabet characters are constants derived from
the constants of the equation, and the group’s structure. Recall that the νz,as represent
variables over Z (see Notation 3.2). For i ∈ {1, −1} will use δi = 1 if i = −1 and δi = 0
otherwise.

Lemma 3.3. The words ν1, . . . , νM form a solution to (3.8) in a class 2 nilpotent group
with a virtually cyclic commutator subgroup, if and only if the following equations and
congruences hold:

Am +

N∑
z=1

εzνpz ,am = 0, (3.9)

Bm +

N∑
z=1

εzνpz ,bm ≡lm 0, (3.10)

Dm +

N∑
z=1

εzνpz ,dm −
N∑

z,u=1
u<z

n∑
j=1

εuνpu,ajKmzj +

N∑
z,u=1
u<z

r∑
j=1

εuνpu,bjLmzj −
N∑

z,u=1
u≤z

n∑
i=1

εtνpt,ai

(3.11)

− Jmui −
N∑

z,u=1
u<z

n∑
i,j=1
i<j

εzεuνpz ,aiνpu,ajαijm −
N∑

z,u=1
u<z

n∑
i=1

r∑
j=1

εzεuνpz ,aiνpu,bjγijm

−
N∑

z,u=1
u<z

r∑
j=1

νpu,bjMmzj −
N∑

z,u=1
u≤z

r∑
i=1

εzνpz ,bi −Omui −
N∑

z,u=1
u<z

r∑
i,j=1
i<j

εzεuνpz ,biνpu,bjβijm

−
N∑
z=1

r∑
i=1

ηim

⌊
ωz,bi + εzνpz ,bi

li

⌋

−
N∑
z=1

δεz

 n∑
i,j=1
i<j

αijmνpz ,aiνpz ,aj +
n∑
i=1

r∑
j=1

γijmνpz ,aiνpz ,bj +
r∑

i,j=1
i<j

βijmνpz ,biνpz ,bj

 ≡km 0
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where for all m

Am =
N∑
z=1

ωz,am , Bm =
N∑
z=1

ωz,bm ,

Jmui =

n∑
j=1
i<j

ωu,ajαijm +

r∑
j=1

ωu,bjγijm, Kmzj =

n∑
i=1
i<j

ωz,aiαijm,

Lmzj =
n∑
i=1

ωz,aiγijm, Mmzj =
r∑
i=1
i<j

ωz,biβijm,

Omui =
r∑
j=1
i<j

ωu,bjβijm,

Dm =

N∑
z=1

ωz,dm

−
N∑

z,u=1
u<z

n∑
i,j=1
i<j

ωz,aiαijmωu,aj −
N∑

z,u=1
u<z

n∑
i=1

r∑
j=1

ωz,aiγijmωu,bj −
N∑

z,u=1
u<z

r∑
i,j=1
i<j

ωz,biβijmωu,bj .

Proof. Let w = ω1ν
ε1
p1 · · ·ωMνεMpM by the left-hand side of the equation (3.8), with the

potential solution (ν1, . . . , νN ) plugged in. By pushing the dms (recall that c = d0) to the
end of w, we have that w now comprises 2N words over {a1, . . . , br}± in Mal’cev normal
form followed by an expression of dms. We will now convert w into Mal’cev normal form,
in order to compare the exponents of the generators of this normal form version for w to
0. From now on, whenever we modify w, we will continue to use the fact that the dms are
central to push them to the right.

Using Notation 2.9, if i < j, then ajai = aiaj [ai, aj ]
−1 = aiajd

−αij0
0 d

−αij1
1 · · · d−αijtt and

bjbi = bibjd
−βij0
0 d

−βij1
1 · · · d−βijtt . Similarly, for any i and j, bjai = aibjd

−γij0
0 d

−γij1
1 · · · d−γijtt .

We will use this to reorder all of the subwords (a
νpz,a1
1 · · · aνpz,ann b

νpz,b1
1 · · · bνpz,brr )εz into

a word within (a±1 )∗ · · · (a±n )∗(b±1 )∗ · · · (b±r )∗(d±0 )∗(d±1 )∗ · · · (d±t )∗, subject to ‘creating’ some
additional commutators, which are then pushed to the right. Note that if εz = 1, then the
word is already in the desired form, so consider when εz = −1. Let u = νεzz be such a
subword (that is, εz = −1). Then

u = b
−νpz,br
r · · · b−νpz,b11 a

−νpz,an
n · · · a−νpz,a11 .

We will start at the right, and push terms to the left. We have that the a1s will have to be
pushed past everything (except each other), the a2s will need to be pushed past everything
except the a1s, and so on up to the br−1s, which will only need to be pushed past the brs,
and the brs which will not need to be pushed past anything, as they will now be in the
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correct place. Thus

u =a
−νpz,a1
1 · · · a−νpz,ann b

−νpz,b1
1 · · · b−νpz,brr

t∏
m=0

d

−
n∑

i,j=1
i<j

αijmνpz ,aiνpz ,aj −
n∑
i=1

r∑
j=1

γijmνpz ,aiνpz ,bj −
r∑

i,j=1
i<j

βijmνpz ,biνpz ,bj

m .

Now consider the general case for u = νεzz , with εz ∈ {−1, 1}. We have

u =a
εzνpz,a1
1 · · · aεzνpz,ann b

εzνpz,b1
1 · · · bεzνpz,brr

t∏
m=0

d

−δεz

 n∑
i,j=1
i<j

αijmνpz ,aiνpz ,aj +

n∑
i=1

r∑
j=1

γijmνpz ,aiνpz ,bj +

r∑
i,j=1
i<j

βijmνpz ,biνpz ,bj


m .

We now push all ais to the left, whilst calculating the cost in dms. For ω1 there is
nothing to do. For ν1, we have ν1,ai ais, and we must move each of these past ω1,aj ajs
(where j > i), and past ω1,bj bjs, (where j is arbitrary). So moving the ais to the left
(provided all lower indexed ais have already been moved) will increase the number of dms
by

−
n∑

i,j=1
i<j

ε1νp1,aiω1,ajαijm −
n∑
i=1

r∑
j=1

ε1νp1,aiω1,bjγijm,

Doing the same for the ais in ω2, we will now have to push them past the ajs and bjs in ω1

and ν1, so this will increase the number of dms by

−
n∑

i,j=1
i<j

ω2,aiαijm(ω1,aj + ε1νp1,aj )−
n∑
i=1

r∑
j=1

ω2,aiγijm(ω1,bj + ε1νp1,bj ),

respectively. Proceeding in this manner for the remaining ωts and νts gives the total increase
of the dms as

−
N∑

t,u=1
u<t

 n∑
i,j=1
i<j

ωt,aiαijm(ωu,aj + εuνpu,aj ) +

n∑
i=1

r∑
j=1

ωt,aiγijm(ωu,bj + εuνpu,bj )



−
N∑

t,u=1
u≤t

 n∑
i,j=1
i<j

εtνpt,aiωu,ajαijm +

n∑
i=1

r∑
j=1

εtνpt,aiωu,bjγijm



−
N∑

t,u=1
u<t

 n∑
i,j=1
i<j

εtεuνpt,aiνpu,ajαijm +

n∑
i=1

r∑
j=1

εtεuνpt,aiνpu,bjγijm

 .
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This occurs in (3.4) and (3.5) in Example 3.1. We will now reorder the bis, which occurs
in (3.4) and (3.5) in Example 3.1. Again, those in ω1 are already in position, and pushing
those in ν1 into place increases the number of dms by

−
r∑

i,j=1
i<j

ε1νp1,biω1,bjβijm.

Doing the same for ω2 increases the number by

−
r∑

i,j=1
i<j

ω2,biβijm(ω1,bj + ε1νp1,bj ).

Doing the same for all ωzs and νpzs increases the exponent sum of the dms by

−
N∑

t,u=1
u<t

 r∑
i,j=1
i<j

ωt,biβijm(ωu,bj + εuνpu,bj )

− N∑
t,u=1
u≤t

r∑
i,j=1
i<j

εtνpt,biωu,bjβijm −
N∑

t,u=1
u<t

r∑
i,j=1
i<j

εtεuνpt,biνpu,bjβijm.

It remains to reduce the bis with respect to their modularities, as is done in (3.6) in Example
3.1. We have that doing so increases the number of dms by

−
N∑
t=1

r∑
i=1

ηim

⌊
ωt,bi + εtνpt,bi

li

⌋
,

respectively. Recall that our floor terms round towards zero. We have now converted w to
normal form. So the normal form version of w is trivial if and only if all of the exponents
of the ais, bis, dis in its normal form are equal to 0. That is, for all valid m, the following
system of equations hold. As each of the following equations is computed by setting the
exponent of a generator to 0, we give the generator responsible for each equation in brackets
next to the equation. This corresponds to going from (3.6) to (3.7) in Example 3.1. We
given in brackets at the left of each equation the generator that is being equated to zero to
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obtain this equation. Recall again we are using d0 to represent c.

(am)
N∑
t=1

ωt,am +
N∑
t=1

εtνpt,am = 0,

(bm)
N∑
t=1

ωt,bm +
N∑
t=1

εtνpt,bm ≡lm 0,

(dm)
N∑
t=1

ωt,dm +
N∑
t=1

εtνpt,dm

−
N∑

t,u=1
u<t

 n∑
i,j=1
i<j

ωt,aiαijm(ωu,aj + εuνpu,aj ) +
n∑
i=1

r∑
j=1

ωt,aiγijm(ωu,bj + εuνpu,bj )



−
N∑

t,u=1
u≤t

 n∑
i,j=1
i<j

εtνpt,aiωu,ajαijm +

n∑
i=1

r∑
j=1

εtνpt,aiωu,bjγijm



−
N∑

t,u=1
u<t

 n∑
i,j=1
i<j

εtεuνpt,aiνpu,ajαijm +

n∑
i=1

r∑
j=1

εtεuνpt,aiνpu,bjγijm



−
N∑

t,u=1
u<t

 r∑
i,j=1
i<j

ωt,biβijm(ωu,bj + εuνpu,bj )

− N∑
t,u=1
u≤t

r∑
i,j=1
i<j

εtνpt,biωu,bjβijm

−
N∑

t,u=1
u<t

r∑
i,j=1
i<j

εtεuνpt,biνpu,bjβijm −
N∑
t=1

r∑
i=1

ηim

⌊
ωt,bi + εtνpt,bi

li

⌋

−
N∑
z=1

δεz

 n∑
i,j=1
i<j

αijmνpz ,aiνpz ,aj +

n∑
i=1

r∑
j=1

γijmνpz ,aiνpz ,bj +

r∑
i,j=1
i<j

βijmνpz ,biνpz ,bj

 ≡km 0

Replacing constants in these equations with the constants stated in the lemma completes
the proof.

We use the following definitions to restate Lemma 3.3 in an easier format.

Definition 3.4. A quadratic function from Zn to Z, where n ∈ Z>0, is a function f : Zn → Z
such that there exist aij ∈ Z for each i, j ∈ {1, . . . , n} and b1, . . . , bn, c ∈ Z, such that
for all (x1, . . . , xn) ∈ Zn,

f(x1, . . . , xn) =
n∑
i=1

n∑
j=1

aijxixj +
m∑
i=1

bixi + c.
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A linear function from Zn → Z is a function f : Zn → Z, such that there exist b1, . . . , bn, c ∈
Z, such that for all (x1, . . . , xn) ∈ Zn,

f(x1, . . . , xn) =

m∑
i=1

bixi + c.

Definition 3.5. Let w = 1 be an equation in a class 2 nilpotent group. The system of
equations in the ring of integers obtained by equating the exponents in the Mal’cev normal
form for the equation to zero (that is, the system obtained in Lemma 3.3) is called the
Z-system of w = 1.

We now restate Lemma 3.3 up to grouping constants, and renaming constants and
variables.

Lemma 3.6. The Z-system of a single equation w = 1 in a class 2 nilpotent group G with a
virtually cyclic commutator subgroup is equivalent to a finite system of linear equations and
congruences in Z, together with the following equations and congruences for finitely many
k:

n∑
i=1

−αiYi + f(X1, . . . , Xm) +
m∑
i=1

εi

⌊
βiXi + κi

γi

⌋
= 0, (3.12)

gk(X1, . . . , Xm) +
m∑
i=1

ζki

⌊
µkiXi + χki

λki

⌋
≡ 0 mod δk, (3.13)

where the values with Greek alphabet names are all constants computable from the class 2
nilpotent group and the single equation, X1, . . . , Xm, Y1, . . . , Yn are variables, and the f
and the gks are quadratic functions.

Lemma 3.7 follows with a little work from the result of Siegel that the satisfiability of
single quadratic equations in the ring of integers is decidable [16]. We refer the reader to
[5] for the proof.

Lemma 3.7 ([5], Section 2.2). It is decidable whether a system of equations of the form
stated in Lemma 3.6 admits a solution.

4. Equations in virtually nilpotent groups

Within this section, we look at how equations behave when passing to a finite index over-
group. From [5], we know that the single equation problem is decidable in any class 2
nilpotent group with a virtually cyclic commutator subgroup. Doing so requires an under-
standing of how automorphisms of such groups behave. We start by investigating these.

Proposition 4.1. Let G be a class 2 nilpotent group with a virtually cyclic commutator
subgroup. Let {a1, . . . , an, b1, . . . , br, c, d1, . . . , dt} be a Mal’cev generating set for G.
For each θ ∈ Aut(G), there exist linear functions f1, . . . , fn+r : Zn+r → Z, linear functions
g0, g1, . . . , gt : Zt+1 → Z, and quadratic functions h0, h1, . . . , ht : Zn+r → Z, such that

for all Mal’cev normal form words w = ai11 · · · ainn b
in+1

1 · · · bin+rr cq0dq11 · · · d
qt
t ,

θ(w) = a
f1(i1, ..., in+r)
1 · · · bfn+r(i1, ..., in+r)r cg0(q0, ..., qt)+h0(i1, ..., in+r) · · · dgt(q0, ..., qt)+ht(i1, ..., in+r)t .
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Proof. First note that the commutator subgroup is preserved by θ. Thus (taking d0 = c by
convention), we have for all ρ ∈ {1, . . . , n}, σ ∈ {1, . . . , r} and ς ∈ {0, . . . , t},

θ(aρ) = a
Aρ1
1 · · · aAρnn b

Bρ1
1 · · · bBρnr d

Dρ0
0 d

Dρ1
1 · · · dDρtt

θ(bσ) = a
A(n+σ)1

1 · · · aA(n+σ)n
n b

B(n+σ)1

1 · · · bB(n+σ)r
r d

D(n+σ)0

0 d
D(n+σ)1

1 · · · dD(n+σ)t

t

θ(dς) = d
D′ς0
0 d

D′ς1
1 · · · dD

′
ςt

t .

for some A11, . . . , A(n+r)n, B11, . . . , B(n+r)r, D10, . . . , D(n+r)t, D
′
00, . . . , D

′
tt ∈ Z. Let

g = θ(ai11 · · · ainn b
in+1

1 · · · bin+rr dq00 d
q1
1 · · · d

qt
t ). Then

g =
n+r∏
ρ=1

a
iρAρ1
1 · · · aiρAρnn b

iρBρ1
1 · · · biρBρnr iρd

Dρ0
0 · · · iρd

Dρm
m

t∏
ς=0

d
qςD′ς0
0 · · · dqςD

′
ςt

t

= a

n+r∑
ρ=1

iρAρ1

1 · · · b

n+r∑
ρ=1

iρBρr

r

t∏
ς=0

d

n+r∑
ρ=1

iρDρς +

t∑
m=0

qmD
′
mς +

n∑
ρ,ρ′=1

ρ<ρ′

n+r∑
σ,σ′=1

σ<σ′

πρρ′ςAσρAσ′ρ′iσiσ′ +

n∑
ρ=1

r∑
ρ′=1

n+r∑
σ,σ′=1

σ<σ′

υρρ′ςAσρBσ′ρ′iσiσ′

ς

+
r∑

ρ,ρ′=1

ρ<ρ′

n+r∑
σ,σ′=1

σ<σ′

τρρ′ςBσρBσ′ρ′iσiσ′

If σ ∈ {1, . . . , n}, define fσ(i1, . . . , qt) =
∑n+r

ρ=1 iρAρσ, and if σ ∈ {n+ 1, . . . , n+ r}, let

fσ(i1, . . . , qt) =
∑n+r

ρ=1 iρBρσ. For ς ∈ {0, . . . , t}, define functions gς and hς by

gς(q0, . . . , qt) =

t∑
m=0

qmD
′
mς

hς(i1, . . . , in+r) =

n+r∑
ρ=1

iρDρς +

n∑
ρ,ρ′=1

ρ<ρ′

n+r∑
σ,σ′=1

σ<σ′

πρρ′ςAσρAσ′ρ′iσiσ′ +

n∑
ρ=1

r∑
ρ′=1

n+r∑
σ,σ′=1

σ<σ′

υρρ′ςAσρBσ′ρ′iσiσ′

+
r∑

ρ,ρ′=1

ρ<ρ′

n+r∑
σ,σ′=1

σ<σ′

τρρ′ςBσρBσ′ρ′iσiσ′ .

We have that θ(g) equals

a
f1(i1, ..., in+r)
1 · · · bfn+r(i1, ..., in+r)r d

g0(q0, ..., qt)+h0(i1, ..., in+r)
0 · · · dgt(q0, ..., qt)+ht(i1, ..., in+r)t .

Moreover, the functions fσ and gς are linear, and the functions hς are quadratic, as required.
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We generalise an equation in a group G to allow variables to be acted upon by auto-
morphisms of G. As we will see in Lemma 4.4, solving twisted equations in G is ‘equivalent’
to solving equations in finite extensions of G.

Definition 4.2. Let G be a group. A twisted equation in G with variables V is an element
w ∈ (G ∪ F (V )×Aut(G))∗, and is again denoted w = 1. Define the function

p : G×Aut(G)→ G

(g, ψ) 7→ gψ.

If φ : F (V ) → G is a homomorphism, let φ̄ denote the (monoid) homomorphism from
(G ∪ F (V ) × Aut(G))∗ to (G × Aut(G))∗, defined by (h, ψ)φ̄ = (hφ, ψ) for (h, ψ) ∈
F (V ) × Aut(G) and gφ̄ = g for all g ∈ G. A solution to w = 1 is a homomorphism
φ : F (V )→ G, such that wφ̄p = 1G.

For the purposes of decidability, in finitely generated groups, the elements of G will be
represented as words over a finite generating set, and in twisted equations, automorphisms
will be represented by their action on the generators.

The single twisted equation problem in G is the decidability question as to whether there
is a terminating algorithm that accepts a twisted equation w = 1 as input, returns yes if
w = 1 admits a solution and no otherwise, where elements of G within w are represented
by words over a finite generating set, and automorphisms are represented by their action
on the finite generating set.

We give a brief example of a twisted equation in Z.

Example 4.3. Consider the twisted equation X = Y ψ in the group Z with the generator
a, where ψ ∈ Aut(Z) maps a to a−1 (the unique non-identity automorphism). It follows
that this equation is equivalent to X = Y −1, which is not difficult to show has the solution
set

{(ax, a−x) | x ∈ Z}.
More generally, any twisted equation in Z can be solved using this argument, as the iden-
tity automorphism can simply be removed without affecting the solution set, and the non-
identity automorphism can be replaced by adding an inverse sign to the variable it acts on.
This yields an (untwisted) equation in Z.

The following lemma is widely known, although often not stated explicitly. Variations
of it have been used to show systems of equations in virtually free groups, or virtually
abelian groups are decidable, or to describe the structure of solution sets (see for example
[2, 3, 6]). We include a proof for completeness.

Lemma 4.4. Let G be a group with a finite-index normal subgroup H, such that H has
decidable single twisted equation problem. Then G has decidable single equation problem.

Proof. Let T be a (finite) transversal for H. consider an equation w = 1 in G. We can
express every element in G in the form ht for h ∈ H and t ∈ T . Thus we can write w = 1
as

h1t1X
ε1
i1
· · ·hKtKXεK

iK
= 1, (4.1)

where hj ∈ H, tj ∈ T , and εj ∈ {−1, 1}, for all j, and X1, . . . , XN are the variables of
= 1. If (g1, . . . , gN ) is a solution, then each gj can be expressed in the normal subgroup-
transversal form, and so by applying this fact to our variables, (4.1) admits a solution if
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and only if the following equation does:

h1t1(Yi1Zi1)ε1 · · ·hKtK(YKZK)εK = 1, (4.2)

where Xj = YjZj , Yj is a variable over H, and Zj is a variable over T , for all j. For each
g ∈ G, define ψg : G → G by hψg = ghg−1. As H is normal, these automorphisms fix H.
We will abuse notation, and extend this notation to define ψZ1 , . . . , ψZN . Let

δj =

{
0 εj = 1
1 εj = −1.

Thus (4.2) is equivalent to

(Y ε1
i1
ψδ1Zi1

)Zε1i1 h1t1 · · · (Y
εK
iK
ψδKZiK

)ZεKiK hKtK = 1.

By pushing all Yjs and hjs to the left, we obtain

(Y ε1
i1
ψδ1Zi1

)(h1ψ
ε1
Zi1

) · · · (Y εK
iK
ψδKZiK

ψtK−1ψ
εK−1

ZiK−1
· · ·ψt1ψ

ε1
Zi1

)(hKψ
εK
ZiK

ψtK−1 · · ·ψt1ψ
ε1
Zi1

)Zε1i1 t1 · · ·Z
εK
iK
tK = 1.

(4.3)

We have that a necessary condition for a potential solution (y1z1, . . . , yNzN ) to (4.3) to be
a solution is that t1zi1 · · · tKziK ∈ H. Let A be the set of tuples (z1, . . . , zN ) of transversal
elements such that t1zi1 · · · tKziK ∈ H. As T is finite, so is A, and so the solution set to
(4.3) is equal to the finite union across (z1, . . . , zN ) ∈ A of the following twisted equations
in H:

(Y ε1
i1
ψδ1zi1

)(h1ψ
ε1
zi1

) · · · (Y εK
iK
ψδKziK

ψtK−1ψ
εK−1
ziK−1

· · ·ψt1ψε1zi1 )(hKψ
εK
ziK

ψtK−1 · · ·ψt1ψ
ε1
zi1

)zε1i1 t1 · · · z
εK
iK
tK = 1

Since the twisted single equation problem in H is decidable, and we can check if each of
these equations admit solutions, noting there are finitely many of them. If at least one
admits a solution, then w = 1 does. If none admit a solution, then neither does w = 1.

Now that we have Lemma 4.4, the following is (almost) all that is required to prove
that the single equation problem in a virtually class 2 nilpotent group with a virtually cyclic
commutator subgroup is decidable.

Lemma 4.5. The single twisted equation problem in a class 2 nilpotent group with a virtually
cyclic commutator subgroup is decidable.

Proof. Consider a single twisted equation E in a class 2 nilpotent group G. We can view
E by applying the automorphisms to the words νz within the statement of Lemma 3.3.
Using Proposition 4.1, automorphisms act as linear functions of νz,a1 , . . . , νz,an and
νz,b1 , . . . , νz, br , and quadratic functions of νz, c and νz, d1 , . . . , νz, dt .

In Lemma 3.3, the values νz, c and νz, d1 , . . . , νz, dm only appear in linear terms in
the system (that is, they never appear in the form νz,cνz, di). Thus after applying the
automorphisms, we will have a system of the form stated in Lemma 3.6 equivalent to E . By
Lemma 3.7, a system of the form of Lemma 3.6 is decidable, and thus the result follows.

All that remains to prove Theorem 1.1 is to deal with the difference between a finite-
index subgroup and a finite-index normal subgroup.

Lemma 4.6. Let N be a finite-index normal subgroup of a group H, such that H is nilpotent
of class 2, and H has a virtually cyclic commutator subgroup. Then N is nilpotent of class
2 and has a virtually cyclic commutator subgroup.
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Proof. Subgroups of nilpotent groups of class c are always nilpotent (see, for example [1],
Theorem 2.4), and thus N is nilpotent of class 2. Moreover [N, N ] ≤ [H, H], and so [N, N ]
is contained in a virtually cyclic group, and is therefore virtually cyclic.

Combining our lemmas now gives the following.

Theorem 1.1. The single equation problem in virtually a group that is class 2 nilpotent
group with a virtually cyclic commutator subgroup is decidable.

Proof. Let P be the property of being class 2 nilpotent and having a virtually cyclic com-
mutator subgroup. By taking the normal core, we have that a virtually P group admits
a finite-index normal subgroup. Lemma 4.4 implies that this normal subgroup must be P.
We have therefore shown that any virtually P group has a finite-index normal subgroup
that is P. We have from Lemma 4.5 that the single twisted equation problem in a group
with P is decidable. The result now follows by 4.6.
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